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Abstract

The summer of 2004 saw the GFD program tackle "Tides". Myrl Hendershott (Scripps
Institution of Oceanography) gave a fabulous introduction to the subject in the first week
of the course, laying the foundations from astronomy and classical geophysical
fluid dynamics. In the second week, Chris Garrett (University of Victoria) admirably followed
up with recent developments on the subject, including the recent observations from satellite
altimetry, their implications to mixing and circulation, and even a memorable lecture on
the noble theme of how we might solve the world's energy crisis. The principal lectures
proved unusually popular this summer, and the seminar room at Walsh often overflowed in the
first two weeks.

Following on from the lectures, the seminar schedule of the summer covered in greater
detail the oceanographic issues with which researchers are actively grappling. We also
heard about related problems regarding atmospheric, planetary and stellar tides, together
with the usual mix of topics on GFD in general.

The summer once again featured a lecture for the general public in the Woods Hole
area. Carl Wunsch delivered a very well received lecture entitled "Climate Change Stories",
in which he gave an impression of how scientists generally believe our climate is currently
changing, whilst simultaneously urging caution against some of the more outrageous and
exaggerated claims. The lecture was held at Lilly Auditorium, thanks to the hospitality
of the Marine Biology Laboratory. The reception following the lecture was enjoyed by
all.

Neil Balmforth and Stefan Llewellyn Smith acted as Co-Directors for the summer.
Janet Fields, Jeanne Fleming and Penny Foster provided the administrative backbone to
the Program, both during the summer and throughout the year beforehand. As always,
we were grateful to the Woods Hole Oceanographic Institution for the use of Walsh Cottage,
and Keith Bradley's solid service could not be overlooked. Shilpa Ghadge and Shreyas
Mandre are to be thanked for their part in comforting the fellows, developing the summer's
proceedings volume (available on the GFD web site) and for running the computer network.
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Lecture 1: Introduction to ocean tides

Myrl Hendershott

1 Introduction

The phenomenon of oceanic tides has been observed and studied by humanity for centuries.
Success in localized tidal prediction and in the general understanding of tidal propagation
in ocean basins led to the belief that this was a well understood phenomenon and no
longer of interest for scientific investigation. However, recent decades have seen a renewal
of interest for this subject by the scientific community. The goal is now to understand
the dissipation of tidal energy in the ocean. Research done in the seventies suggested that
rather than being mostly dissipated on continental shelves and shallow seas, tidal energy
could excite far traveling internal waves in the ocean. Through interaction with oceanic
currents, topographic features or with other waves, these could transfer energy to smaller
scales and contribute to oceanic mixing. This has been suggested as a possible driving
mechanism for the thermohaline circulation.

This first lecture is introductory and its aim is to review the tidal generating mechanisms
and to arrive at a mathematical expression for the tide generating potential.

2 Tide Generating Forces

Tidal oscillations are the response of the ocean and the Earth to the gravitational pull of
celestial bodies other than the Earth. Because of their movement relative to the Earth,
this gravitational pull changes in time, and because of the finite size of the Earth, it also
varies in space over its surface. Fortunately for local tidal prediction, the temporal response
of the ocean is very linear, allowing tidal records to be interpreted as the superposition of
periodic components with frequencies associated with the movements of the celestial bodies
exerting the force. Spatial response is influenced by the presence of continents and bottom
topography, and is a less well established matter.

Figure 1 shows a two month tidal record from Port Adelaide, Australia. Even though
tidal records vary significantly for different coastal locations, this one in particular can be
considered typical in that it clearly shows characteristics of tidal oscillations that can be
directly related to astronomical forcings.

Perhaps the first feature to stand out is the semi-diurnal component, two high tides can
be seen to occur on each day. A closer look reveals a modulation of the amplitude of the
semi-diurnal oscillation, roughly over a one month period. Intervals of high amplitude are
known as spring tides while those of lower amplitudes are known as neap tides. As indicated
in the figure, the springs-neaps cycle is associated with the phases of the Moon. For a same
day, there is often a difference in the amplitude of the two high tides. This is known as the
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Figure 1: Two months of tidal data for Port Adelaide Australia. We can see in this record
some features that can be directly accounted for by the details of the astronomical tidal forc-
ing, such as the springs-neaps cycle, the daily inequality and the absence of daily inequality
when the Moon is on the Equator.
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"daily inequality" and, as indicated in the figure, disappears when the Moon is over the
equator.

We will try to clarify below the basic ideas underlying tidal forcing. We will also try
to explain the origin of the forcing terms responsible for causing the tidal record features
described above. Finally we will attempt to explain the derivation of the tide generating
potential.

3 Tidal Forcing

Even though small compared to the planets and especially to the sun, the Moon is by far
the celestial body closest to the Earth. Because gravitational pull decreases linearly with
mass and quadratically with distance, the Moon exerts the biggest influence over the Earth,
contributing the most to the formation of tides. We will begin by considering its effects.

The centres of mass of the Earth and the Moon orbit around the common centre of mass
of the Earth-Moon system. Their movements are such that centrifugal force counterbalances
gravitational attraction at the individual centres of mass. The Earth is a rigid body, so
every material point in it executes an identical orbit, and is therefore subject to the same
centrifugal force, as illustrated in figure 2. Gravitational force however will vary because
the distance between these points to the Moon may vary by up to one Earth diameter.
Gravitational force will prevail over centrifugal force on the hemisphere closest to the Moon
and centrifugal force will prevail on the hemisphere furthest to it. The opposite hemispheres
have net forces in opposite directions, causing the ocean to bulge on both sides. As the
Earth spins under this configuration, two daily tides are felt.

Figure 2: The centre of the Earth, shown as a filled dot, rotates about the centre of mass of
the Earth-Moon system, indicated by a 'x' mark. Dashed circles show the orbital movement
of the points shown by a 'o' mark on Earth's surface and the center of the Earth.

A common source of confusion regarding the argument above is to suppose that the
centrifugal force relevant to the problem is due to the spinning of the Earth around its own
axis. This seems reasonable at first sight because this force is constant for every latitude
circle, allowing for an imbalance with lunar attraction, which is longitude dependent at
any given instant. However, the centrifugal force due to the Earth's spin has permanently
deformed the Earth's surface into a spheroid (as opposed to the spherical shape that would
ensue from self-gravitation only). That is to say, this centrifugal force is compensated by
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the Earth's own gravitational field. A mnemonic phrase to keep in mind is that tides are
caused by the action of other celestial bodies over the Earth.

Another not entirely uncommon misconception is that tides are partly the result of the
variation of centrifugal force over the surface of the Earth. This kind of confusion arises
because the distance between the centre of the Earth-Moon system is smaller than one
Earth radius and therefore this point lies "within" the Earth. If this were a fixed material
point, like the centre of the Earth, around which the planet revolved, there would indeed
be a variation of centrifugal force with distance from it. However, the centre of mass of
the Earth-Moon system is just a point in space, and as the Earth revolves around it, as
indicated in figure 2 none of its material points are fixed.

Even though a constant field, the centrifugal force due to the revolution of the Earth
around the system's centre of mass is essential to the semi-diurnality of the tides. We can
illustrate this by considering the situation in which the centre of the Earth is fixed. In this
case the only force acting upon it is lunar gravitational attraction. Although uneven over
the surface, it pulls every point on Earth towards the Moon, causing the water to bulge on
the hemisphere closer to it. The spinning of the Earth would therefore make every point on
it experience a diurnal tide cycle, instead of a semi-diurnal one. This situation is illustrated
in figure 3

M
h n

Figure 3: Tidal deformation that would ensue if from lunar attraction if the Earth's centre
of mass were fixed.

We can calculate the surface elevation that would result from this forcing. The assump-
tion is that the elevation would be such that net terrestrial gravitational force would exactly
compensate for the lunar force at the point.

Net Moon's gravitational force:

GM _GM _GM2h

(a + h)2  a 2 - a2  a

Net Earth's gravitational force: GM (a, 2 Mn

a2 ()M
where M is the mass of the Earth, r is the distance between Earth's and Moon's centres of
mass, a is the Earth's radius, h is the sea surface deformation at the sub lunar point and
G is the universal gravitational constant. Equating the two forces and isolating h we get:

a 3 m
h -= 10.7m. (1)
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This is an unrealistically high value.
If we now allow the Earth's centre of mass to accelerate, the centrifugal force due to

this motion will compensate for the Moon's gravity at that point. We can anticipate that
tidal deformation will be smaller, since it will be a response to a smaller resultant force.
As explained earlier, predominance of lunar attraction on the hemisphere facing the Moon
and of the centrifugal force on the one opposing deforms the surface into an ellipsoid. The
water will bulge around the sub-lunar and anti-sub lunar points.

For this case we can also calculate tidal elevation on the sub-lunar point.

Gm Gm GM2a
(r-a)2  r2 - r2  r(2)

where the first term on the right is lunar gravity, the second is the centrifugal force and the

term on the right is the net gravitational force of the Earth. Isolating h we get:

a4 m
h =- r M- 35.8cm (3)

The Moon rotates around the Earth in the same direction as the Earth spins, and the
surface deformation must rotate with it. It takes slightly longer than a day for the Moon to
be directly over the same point on the Earth's surface, as illustrated in figure 4 this is called
a lunar day. Likewise, the period between two high tides is half lunar day. Apart from the
semi-diurnal tides, we can expect the presence of the Moon to permanently deform the sea
surface. This is an order zero effect called the permanent tide.

0

ý N 
0

Figure 4: The Earth-Moon system. The position of the Moon with respect to a fixed point
on the Earth's surface after one revolution is illustrated.

Up to now, we have considered the orbit of the Moon circular. It is however elliptic,
with the Earth-Moon centre of mass being one of the foci. The Moon's gravitational force
over the Earth will be modulated over the period of one anomalistic month (figure 5), as
will the tidal components it generates.
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In summary, tidal forcing by the Moon alone can be represented by the following har-
monics:

Lunar Semi-Diurnal Tide (M2) 2/LD 12h 25.236 min
Lunar Elliptical (N2) 2/LD - 1/perigee 12h 3.501 min
Lunar Monthly Elliptical (Mm) 1/perigee 27.5545 days (anomalistic month)

The 2/LD + 1/perigee term was left out because it has a small amplitude. Modulation
of the amplitude of M2 is represented by the interaction of M 2 and N2, which is constructive
once each anomalistic month.

Figure 5: As the Moon rotates around the Earth, the Earth rotates around the Sun. For
this reason, after each orbital period (anomalistic month), the Moon is in different position
in its orbit with respect to the Sun. In the above picture, we represent on top an initial
position of the Earth and Moon, below it their position after one anomalistic month. The
black Moon in this case represents the position it would have to be in to exhibit the same
phase as in the initial configuration.

All arguments mentioned above are valid for any other celestial body which might be
reasonably considered to form a two body system with the Earth, for which the orbits are
elliptical. Another such body is the sun, whose tidal effect over the Earth (when the two
body system is considered in isolation) can be reduced to the harmonic components below.

Solar Semi-Diurnal Tide (S2) 2/SD 12h 25.236 min
Solar Elliptical (N 2) 2/SD - 1/anom.yr. 12h 3.501 min
Solar Annual Elliptical I 1/perihelion 365.25964 days (anomalistic year)

When Moon and Sun are aligned with the Earth, their semi-diurnal components interfere
constructively, giving rise to tides of larger amplitude, known as spring tides. When they
are in quadrature, the interference is exactly destructive, giving rise to smaller amplitude
tidal variations, called neap tides. The relative arrangement of the Earth Sun and Moon
is perceived on the Earth as the phases of the Moon, and therefore the springs-neaps cycle
has a period of one lunar (synodic) month. A lunar month is the duration required for
the Moon to return to a fixed position in its orbit in relation to the Sun as illustrated in
figure 5.

Up to now we have assumed that the orbits of the Earth (around the Sun) and Moon are
coplanar to the spinning of the Earth at all instants of time. In reality these planes intersect
at an angle. The effect this has over the tide is illustrated in figure 6. As the Earth rotates,
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it perceives the tidal surface as being "tilted" in relation to latitude. In terms of harmonics,
this is represented by a daily component, which gives rise to the daily inequality. When
the tide generating bodies intersect the equatorial plane, the daily inequality disappears.
In the Port Adelaide record (figure 1), we can see that daily inequality disappears when the
Moon is on the Equator.

Figure 6: The Moon's orbit is not coplanar with the Equator. The tidal surface is in general
"tilted" with respect to the Equator giving rise to the daily inequality.

The amplitude of the declinational components depends on the angle of the bodies orbit
to the equatorial plane. Both the lunar orbital plane and the ecliptic precess, modulating
the declinational tides. The Moon's orbit precesses over 18.6 years, its angle to the Ecliptic
varying between -5'08' and 5008'. In relation to the Earth's equatorial plane the variation
is between 23027' - 5°08' and 23027' + 5008'.

As mentioned earlier, the usefulness of decomposing the tide generating force into har-
monics is due to the linearity of the oceans response to it in time. In fact, we have taken
this for granted in the preceding section when we explained the springs-neaps cycle purely
as the result of the interference of two forcing terms. This property allows for more precise
tidal prediction. Tidal records are not used to determine the important frequencies in their
harmonic expansions, these are known from astronomical considerations. Data is used only
to determine the amplitudes of local response to these terms.

4 Spatial Structure of the Tides

As the Earth's spinning under the tide generating potential is felt as the propagation of
the tidal wave. However, this propagation is obstructed by the presence of continents and
bottom topography. Real co-tidal lines therefore look nothing like the constant phase lines of
the tide generating potential. As a plane wave enters a basin, it feels the effect of the Earth's
rotation and propagates along its borders. The nodal line that would exist in the case with
no rotation degenerates into a nodal point, called amphidromic point.The irregularity of
the oceanic basins and of bottom topography disrupt the propagation and a precise map
of tidal propagation could only be obtained after the advent of satellite altimetry. This
data is harmonically analyzed to obtain maps for the different astronomical components.
Figure 7 shows a co-tidal map obtained in this manner. Although the amphidromic points
are eye catching, the less conspicuous anti-amphidromic points, for which tidal amplitude
is maximum and there is almost no phase variation, are probably more useful for testing
satellite altimetry.
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sro

Figure 7: Cotidal map. Amphidromic points are the ones where cotidal lines cross. In
these points tidal amplitude is zero and phase speed infinite. Less conspicuous are the

anti-amphidromic points, where tidal amplitude is maximum and phase stationary.

In the following section we will formalize the ideas outlined above so as to arrive at an
expression for the tide generating potential.

5 The tide generating potential

We want to calculate the tidal force that the Moon or Sun exerts on the Earth, in particular
on the oceans. Remember that we are only interested in the effects of another body on the

Earth, not the effect of the Earth's rotation and gravity on its shape and that of the oceans.
Consider the plane made up of the centre of the Earth, the tide generating body (the

Moon or the Sun), assumed to be a point mass, and an observer at P on the surface of the

Earth, as shown in figure 8. For the moment, we assume R is constant.

P observer on surface

0 R tide generating
centre of body, mass Al

Eairthi centre of mrass of

Z •Earth-TGB system

Figure 8: The geometry for calculating the tidal force at P due to the tide generating body.

The tide generating body (TGB) exerts a force, F, on the centre of the Earth

GM
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where i is the unit normal along the x-direction and G is the universal gravitational constant.
From this, the potential at the centre of the Earth, 0, due to the TGB is

GM GM
V(O) = R2 x + const = R--pcos + const,

where the constant is arbitrary.
Then the resultant force at P is the gravitational force at P, less that at 0, with

potential

V(P)=GM GM
r R2 pcos.. (4)

The sign is chosen as r is measured away from the TGB and the force should be towards
it. Note that the force on the Earth as a whole, F, is balanced by the centrifugal force due
to the motion of the Earth about the common centre of mass of the Earth-TGB system.

The parameters r, R, p and 6 are linked by r 2 = R 2 - 2pR cos 6 + p2 from properties of
triangles. Hence

r R 1 R (5R2) = R

where Pn(z) is the nth Legendre polynomial, with Po(z) = 1, Pl(z) = z, P2(z) = (3z 2 1)/2,
.... The final equality in (5) may be found in, for example, Morse and Feshbach [1].

Hence (4) becomes

V(P) = GM~ [1 + >z n~f P(Cos6)]
R n=2R

For the Moon, 0.0157 < p/R < 0.0180 and for the Sun p/R - 10-4i . Hence the potential
may be truncated at n = 2. Forgetting about the constant GM/R, which is unimportant
since ultimately we want to find the forces, it becomes

GM (p) 2 P2 (cos6). (6)

Note that this potential is symmetric in 6. This is consistent with the discussion in previous
sections, where we argued that the tide generating force is symmetrical with respect to the
plane that contains the Earth's centre of mass and is orthogonal to the Earth-Moon axis.

5.1 The tide generating potential in geographical coordinates

It is more useful to express the tidal potential in geographical coordinates: actual latitude
and longitude of the observer on the Earth and the apparent latitude and longitude of
the TGB. This coordinate system is shown in figure 9. We call attention to the fact that
the longitudinal angles are measures with respect to the Equator. In this coordinate sys-
tem the tidal ellipsoid is "tilted", and the tidal potential will therefore have asymmetrical
components.
From spherical trigonometry

cos 6 = sin 0 sin 6 + cos 0 cos J cos H.

9



North Pole

P, observer P

BTGB H
T 9 GreenwichTGB•

Greenwich meridian
(a) (b)

Figure 9: The geographical coordinates: (a) looking down from the North Pole and (b)
looking at the spherical Earth. Here A is the geographic longitude of the observer and 0 is
the geographic latitude. ý is the angle between the TGB and the observer as in figure 8.
6 is the declination of the TGB and A is the right ascension of the TGB, or its apparent
longitude with respect to an origin T. T is a celestial reference point from which to measure
positions of the TGB: it is the northward crossing of the Sun at equinox, or equivalently the
point of intersection of the equatorial plane and the ecliptic, the plane of the Earth's orbit
about the Sun, as the Sun travels northward. The point T is assumed fixed with respect to
the fixed stars for the current discussion. However, with respect to the rotating Earth, the
point T moves. If t = 0 is taken to be the time at which T lies on the Greenwich meridian,
then at time t, the Earth has rotated wot giving the angle between T and Greenwich, where
wo is the frequency associated with the period of rotation of the Earth about its axis so that
the TGB appears again in the same Earth-TGB orientation. H = wot + A - A is referred
to as the hour angle.
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Figure 10: Equipotential lines for the long-period potential.

Substituting this in (6) gives

V(A, 0) G[ (1 _ 3sin 2 ) (1 _ 3sin 2
44R3

+ sin 20 sin 26 cos H + cos2 0 cos 2 6 cos 2H] , (7)

where R 0 is a reference value of the orbital distance R of the TGB. The coefficient 3GMp2 /4RO
is referred to as the Doodson constant, D. For the Moon, DMoon,/g = 26.75 cm and for the
Sun, Dsun = 0.4605DMoon.

The first term in the square bracket in (7) has no dependence on the hour angle, H, and
gives rise to a long-period1 potential. The second term gives rise to a diurnal potential and
the final term to a semi-diurnal potential. Figures 10-12 show plots of the instantaneous
equipotential lines for the three components of (7) and plots of the cotidal 2 and corange3

lines. The plots shown are in fact representative of the solid Earth tide, since the response

time of the Earth is of the order of an hour (deduced from earthquake measurements), much
quicker than the time period of the tidal potential and so the solid Earth can adjust to the
equipotential surfaces. The oceans have a much longer response time.

In reality, the declination and orbital distance in (7) vary in time. In the following
sections, we consider how these variations change the potential.

1In the present analysis, infinitely long. However we shall see that each term of the potential is modulated
and hence this becomes a long-period potential.

2A line passing through points at which high tide occurs at the same number of hours after the Moon

transits the Greenwich meridian.
3 A line passing through points of equal tidal range.

11



80

20

4020

-20

-40

-60

-80

-150 -100 -50 0 50 100 150

80 ..... ..... . ._ ..... .. ~ ~ . k

80 ................... .-. . -... -- .- •.-.. . •..

... .. .... .w. . ...........

-20 ... ... ._ .... ...... .__.............

-40
40'

0 ....................... .... ... .. ............... ..... .. ..ZZ •Z 2 2Z Z •... .................. . Z Z

-40 - ------
A-EI60.... -- ' =_

~......... . ...... ............ ... ................. 7.-. . ......
- 0 -. -- ...... ................. = = F---• • • :::== :/i• :•

-202

. .. ... -- ----



80

60

40 A7

20

0

-20

-40

-60
-80 " --:

-150 -100 -50 0 50 100 150

80

60

4020

0 X.

-60. ... ...... . .... .. .....-4 ....... ... ........... ,....................

-80

-150 -100 -50 0 50 100 150

Figure 12: Equipotential lines (top) and cotidal, green, and corange, red, lines (bottom) for
the semi-diurnal potential. The arrow indicates the direction of increasing cotidal time.
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5.2 Variation of the declination of the tide generating body

The angle 3 in figure 9b and (7) varies in time, based on the location of the tide generating
body relative to the plane of the equator. This variation has a time period related to the
precession of the equinoxes for the Sun and to the precession of the lunar node for the
Moon.

5.2.1 Precession of the equinoxes

The Earth's rotational axis is tilted, at present at 24°27', to the ecliptic. 4 As the Earth
rotates about the Sun, this means that the declination of the Sun varies, as shown in
figure 13a. Hence only after a 'year' is the declination expected to return to its initial value.

\(> -- current rotation
axis

N
Earth/ = 0 Earth

S> 0 ._future rotation

6 > 0=6 0 • axis

(a) (b)

Figure 13: (a) The variation in declination due to the rotation of the Earth about the Sun.
(b) The precession of the equinoxes.

Lunar and solar gravity act on the oblate Earth, making it spin like a top, with its
rotation axis precessing as depicted in figure 13b. The celestial point where the Sun crosses
the plane of the equator, moving from south to north is known as the Point of Aries or the
vernal equinox and is the point T in figure 9 at which 3 = 0. Due to precession, it moves
eastward relative to the fixed stars.5 The period of precession is 25570 years. The time
period of the revolution of the Earth about the Sun from vernal equinox to vernal equinox
is the tropical year and is 365.242199 mean solar days. This is the 'year' we are interested
in for the declination returning to its original value.

5.2.2 Precession of the lunar node

The plane of the Moon's orbit around the Earth is inclined at 5'081 with respect to the
ecliptic. It precesses with a period of 18613 years due to the Earth's gravity.

4 The plane of the Earth's orbit around the Sun.
51n antiquity, it was in the constellation Aries. Now it is in Pisces.
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The intersection of the plane of the Moon's orbit with the equatorial plane as the Moon
goes from south to north is the ascending lunar node, Q. The mean time period separating
adjacent passages through Q is the tropical month of 27.321582 mean solar days. This is
the time period before the same declination of the Moon is again achieved.

5.3 Variation of the orbital distance of the TGB

In reality, R is not fixed in (7), since the Moon and Sun are not a constant distance from
the Earth. Here we consider how the orbital distance of the Moon varies in time. The same
analysis also applied for the Sun.

5.3.1 Kepler's laws

The orbit of the Moon about the Earth is an ellipse (Kepler's first law), as we now show.
Consider the geometry shown in figure 14. From Newton's laws,

mn = -GmMx/R 3 ,

where x is the position vector of the Moon relative to the Earth.

77 body,

•• mass m

body,
massM

Figure 14: The Moon of mass m in orbit about the Earth of mass M. Assume that the
Earth is fixed in space.

Rewriting this equation in polar coordinates, with x = R cos A, and y - R sin A, gives

Rý - Rý,e = -GM/R 2 , RX + 2R,ý = O.

Integrating the second equation gives Kepler's second law

R2)e = constant = h, (8)

which says that the line joining the orbiting Moon and the Earth sweeps out equal areas in
equal intervals of time. Integrating the first equation, by setting u = 1/R, gives

1 GMS= A'cosK + G (9)

where A' is a constant of integration and we have used the fact that 1/R is symmetric about
the line 7 = 0. This is the equation of an ellipse with semi-major axis a and eccentricity e
satisfying A' = e/a(1 - e2 ) and gM/h 2 = 1/a(1 - e2 ).
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q2 :

Figure 15: The definition of the eccentric anomaly E.

We now want to see how this modifies the potential given in (7). Instead of using the
true anomaly, K, it is more useful to write (9) in terms of the eccentric anomaly, E, defined
as shown in figure 15. Then it is possible to write

R = a(1 - ecosE) (10)

and the motion of the Moon in its orbit is given by Kepler's equation

E - esinE == Wkt, (11)

in which t = 0 at perigee6 and Wk = GM/a3 , the Kepler frequency. The mean anomaly,
E 0 is related to E by

E 0 = E - sinE

and increases uniformly in time: E0 = wkt from (11).

In (7) we then have, assuming the eccentricity e is small,

Ro/R- a/R = (1 - ecosE)- 1 - I + ecosEo + e2 cos2Eo0 ... ,

from (10) and
Ro/R = a/R = (1 + ecosK)/(1 - e2),

from (9). Hence K - E0 + 2e sin E0 + ....
Remembering from figure 14 that the ecliptic longitude, Ae = p + K and setting the

mean longitude to be h = p + Eo we obtain

R/Ro = 1 + ecos(h-p) + e2 cos2(h-p) +...,

A, = h + 2esin(h -p) +....

This can be simply translated into geographical coordinates for the Sun as the tide
generating body. For the Sun

sin 6 = sin Ae sin E, A = A, - tan2 (E/2) sin Ae,
6The point in the orbit of the Moon nearest the Earth.
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where 6 is the declination, Ae is the ecliptic longitude, A is the right ascension of the Sun
and E is the angle between the ecliptic and the equatorial plane.

For the Earth-Moon system it is actually more complex to write the solution in terms
of the geographical coordinates as the lunar node does not coincide with the point of Aries
and the Moon's orbit is not in the ecliptic. Furthermore, there is a strong solar perturbation
to its orbit.

5.4 Tidal harmonics

The effect of the variations of declination and distances to the tide generating bodies is to
alter the coefficients for terms in (7). These variations may be Fourier decomposed and
result in modulations of the basic tidal frequencies: the long-period, diurnal and semi-
diurnal. Then the potential given in (7) may be written as

V(A,0) = Vo(A, 0) + VI(A, 0) + V2 (A, 0), (12)

where
VS(A, 0) = DG, E Cj cos(ajt + sA + Oj)

with Go = (1 - 3 sin 2 0)/2, G1 = sin 20 and G 2 = cos 2 0; D the Doodson constant and Ci
the amplitude of the component. The harmonic frequency o-j is a linear combination of the
angular velocity of the Earth's rotation w [already seen in (7) in the hour angle] and the sum
and the difference of angular velocities Wk with k = 1, ... , 5 which are the five fundamental
astronomical frequencies, having the largest effect modifying the potentials (it is possible
to include many more). These five frequencies are given in table 1. Hence

5

U3 = sw + E mkWk,

k=1

where s = 0, 1, 2 for the long-period, diurnal and semi-diurnal respectively; mn = 0, ±1, ±2,...
and w is either taken to be w0 - w, for the Moon as the TGB, or wo - W2 for the Sun with

wo the sidereal7 frequency. A is the longitude of the observer.
All tidal harmonics with amplitudes C > 0.05 are given in table 2.

5.4.1 Doodson numbers

For convenience, the frequencies cj may be written as

Doodson number s mj mj mj mj m5 + 0 5 5 5 5 5,

where the addition of 055555 is simply so that the Doodson numbers are all positive (since
in general the mJ lie in the range -5 < m-' < 5). The Doodson numbers are also given in
table 2.

7The length of time between consecutive passes of a given 'fixed' star in the sky over the Greenwich
meridian. The sidereal day is 23 hr56 min, slightly shorter than the 'normal' or solar day because the Earth's
orbital motion about the Sun means the Earth has to rotate slightly more than one turn with respect to the
'fixed' stars in order to reach the same Earth-Sun orientation.
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Period Nomenclature
360°/wl = 27.321582 days period of lunar declination
360°/w2 = 365.242199 days period of solar declination

360°/w 3 = 8.847years period of lunar perigee rotation
360°/w4 = 18.613years period of lunar node rotation
360°/w 5 = 20940years period of perihelion rotation

Table 1: The fundamental periods of the Earth's and the Moon's orbital motion. From
Bartels [2].

5.4.2 Spectra of the tides

Figure 16 shows a plot of the spectrum of equilibrium tides with frequencies near twice per
day (the semi-diurnal tides). The spectrum is split into groups separated by a cycle per
month (0.55°hr- 1). Each of these is further split into groups separated by a cycle per year
(0.04°hr-1). The finest splitting in the figure is at a cycle per 8.847years (0.00460hr- 1 ).

10 K

o...... ................... ............. .......... ... 1! i
MV , T,

PIS 27 28 29 30 31 32
rý Freq-tncy (de~w)

101-

10 -

70'

29.80 29.85 29.90 29.95 30.00 30.05 30.10 30.75 30,26

FrquOnCy (dQhr)

Figure 16: A spectrum for equilibrium tides. From oceanworld.tamu. edu/resources/.

Notes by Josefina Arrant and Anja Slim.
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Ampl., Frequency, a Period Doodson Notation
C °hr-I 360°/u number

Long period tides
0.2341 0 055555 So (solar constant)
0.5046 0 055555 Mo (lunar constant)
0.0655 W4 = 0.00221 18.613 years 055565 - (nodal M0 )
0.0729 2w2 = 0.08214 182.621 days 057555 Ssa (declinational SO)
0.0825 W1 -W3 = 0.54437 27.555 days 065455 Mm (elliptical M0)
0.1564 2w, = 1.09803 13.661 days 075555 Mf (declinational M0)
0.0648 2w, + w4 = 1.10024 13.663 days 075565 - (nodal M0 )

Diurnal tides

0.0722 W( - 2wl + W3 = 13.39866 26.868 135655 Q, (elliptical 01)
0.0710 -W( + W1 - W4 = 13.94083 25.823 145565 - (nodal 01)
0.3769 w( - w1 = 13.94304 25.819 145555 01 (basic lunar)
0.1755 W0( - W2 = 14.95893 24.066 163555 P1 (basic solar)
0.1682 W0( + W2 = 15.04107 23.934 165555 Ks (declinational P1 )
0.3623 w( + w1 = 15.04107 23.934 165555 Kg (declinational O1)

0.0718 w( - W1 + w4 = 15.04328 23.931 145565 - (nodal KM)

Semi-diurnal tides
0.1739 2w( - w1 + W3 = 28.43973 12.658 245655 N2 (elliptical M2)
0.9081 2w( = 28.98410 12.421 255555 M 2 (basic lunar)
0.4229 2w0 = 30.00000 12.000 273555 S2 (basic solar)
0.0365 2w0( + 2W2 = 30.08214 11.967 275555 Ks (declinational S2)
0.0786 2w( + 1W2 = 30.08214 11.967 275555 KM (declinational M2)

Combined tides
0.5305 WO = 15.04107 23.934 K1 (lunar-solar declinational)
0.1151 2w0o = 30.08214 11.967 K2 (lunar-solar declinational)

Table 2: The tidal harmonics with amplitude coefficients C > 0.05. w'® is WO -w 2, associated
with the Sun and w( is wo - wl, associated with the Moon. In the table, for the Doodson
numbers, w = w( and hence w0( = W( + W1 - W2 . Note that the table also includes the
Ks harmonic, even though it's amplitude is less than 0.05. Its frequency coincides with
that of KM and they are completely indistinguishable. They are combined into the single
lunar-solar semi-diurnal wave, K2. From Bartels [2].
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Lecture 2: The Role of Tidal Dissipation
and the Laplace Tidal Equations

Myrl Hendershott

1 Introduction

In this lecture we make a first attempt to describe the energetics of tides. We first provide
some discussion of their influence on the global processes of the earth by relating tidally
induced dissipation to the change in the earth's rotation rate, and consider whether there
is any fossil evidence of such a change. We then approach this question of dissipation a
little more formally, from the perspective of an angular momentum budget of the earth-
moon system. Finally, we develop the dynamics of tides from first principles, starting with
the Navier-Stokes equations on a rotating planet and finally obtaining the Laplace tidal
equations.

2 Energetic Dissipation

We shall first consider the relationship between tidal dissipation and the rotation rate of
the earth. If we neglect the internal dynamics of the earth, regarding it as a collection of
processes that will eventually lead to dissipation, then the persistent energy of the planet
is due to rigid-body rotation, whose rate of change is

Et- 0 (1Cp2),)(C2) (1)

where C is the earth's moment of inertia along the polar axis and Q is the earth's rotation
rate. The change in Q is then given by

Q t- E (2)
CQ*

Historically, astronomical data is used to infer Qt, which is then used to compute Et. But
to help motivate this relationship, we would like to compare it to some sort of observational
record. For the moment, let us suppose that we have some rough estimate for the tidal
dissipation. We may then use this to demonstrate how this lead to a variation in the length
of day. Such variation could then leave an imprint in the fossil records, for example. So in
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this case, if we use the following values,[1]

Et = -4.0 x 1019 erg sec- 1 ,

C = 8.043 x 1044 g cm 2 ,

27r 27r
the sidereal period 86164 sec

= 7.292 x 10-5 sec- 1 ,

then we would presume that the earth's rotation rate is currently decreasing at about

Qt = -6.8 x 10-22 rad sec-2.

We can use this to estimate the variation in length of day (LOD), 1

A(LOD) = T' -T•

= 271"

where
fQ=, + AQ + ftAt,

so that

A(LOD) 27 Qtv) ~ At(3

6.9 x 10-8 sec

for At = 1 day 86400 sec. Or, in more appropriate units,

A(LOD)/day = 2.5 msec cy- 1.

As long as QtAt «< Q remains a reasonably accurate statement, it should be possible to
extrapolate about the LOD over epochal times. If we take -At to be 400 million years, then
QtAt ,• 0.12Q and our estimate for a constant LOD variation should be accurate within
about 10%. Then in we compare the difference between current years and 400 million years
ago, we find the following:

Today 365 days per year
400 Million Years Ago 414 days per year

Although mass factor has been neglected, this does demonstrate that there has likely been
a significant change in both the dynamical and radiation cycle of the earth. A natural
question is whether there is any evidence supporting the conjecture that the LOD was
longer in the past, and how much Qt and Et may have varied. The fossil record offers a
possibility, since biological activity should be sensitive to rotation induced variations in the
radiation cycle; this is explored in the next section.

'The angular rotation per day is slightly greater than 27r, but the error is insignificant for our purposes.
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3 Biological Records

Several groups of organisms leave records in the skeletal parts of their accruing tissue, in the
form of sequential and repetitive layers. These layers are interpreted in growth increments,
and the sequence of layers appears to be a consequence of modulation of growth by internal
rhythms inherent to the animal and environmental conditions.

Growth patterns that are controlled by astronomical phenomena are of particular inter-
est. A comparison of frequencies found in living and fossil specimens may reveal indications
of the constancy or periodicity of certain astronomical phenomena. One of the types of
organisms that have been studied in a geophysical context is corals.

Seasonal fluctuations in the rate of coral growth were first reported by R. P. Whitefield in
1898, who described undulations on some surfaces of living corals and suggested that these
represented annual growth increments associated with seasonal water temperature changes.
However, the detailed mechanism by which growth occurs and the factors controlling the

rate of growth are still inadequately understood.
The skeletal part of corals consist of several elements, one of which, the epitheca, reveals

a fine structure of ridges that are parallel to the growing edge (figure 1). These ridges are
interpreted as growth increments and they suggest a periodic fluctuation in the rate of
calcium carbonate secretion. The rate of deposition of these growth increments in modern

reef-forming corals is believed to be daily.
An indication that the growth ridges are daily is that modern corals typically add

about 360 such increments per year, suggesting that the solar day controls the frequency of
deposition[2, 3]. Although, factors other than variable daylight may be important here in
modulating the growth rates, indirect evidence suggests that the solar day has remained the
dominant periodicity in corals studied; Devonian corals studied by Wells[2] show about 400
daily growth increments between successive seasonal annulations, in keeping with expected
value, if present tidal acceleration of the Earth has remained roughly constant over last
3-4 x 108 years. The same qualitative results can be found in molluscs and stromatolites

too.

4 Angular Momentum

The consequences of tidal dissipation can also be seen in the receding of the moon from the
earth. If we ignore the rotation of the moon and regard it as a point in space moving in a
simple circular orbit, and again focus on the rigid-body rotation of the earth, then the total
angular momentum of the earth-moon system is conserved and

a (CQ + ml 2w) = 0, (4)
at
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Figure 1: Middle Devonian coral epitheca from Michigan, U.S.A.

where mn is the moon's mass, 1 is the orbital radius, and w is the orbital frequency. These
parameters currently have values of

m = 7.35 x 1025 g,

1 = 3.84 x 1010 cm,

27r 2.66 x 10-6 rad sec-1.
27.32166 x 86400 sec

Expansion of the angular momentum equation gives

CQt + m (21wlt + 12 Wt) = 0.

To relate the change in distance to the change in frequency, we note that since the motion
is assumed circular,

GMm
12 - rw 21,

so that
w2 13 = GM (Kepler's Third Law),

and hence
Wt =t. (5)

We then obtain an expression for the rate at which the moon drifts from the earth,
2CQt

it - mlw (6)
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Laser ranging of the moon tells us that

It = 3.8 cm yr- 1 = 1.2 x 10-7 cm sec-'

from which we infer that the change in the lunar cycle is

wt = -1.25 x 10-23 rad sec- 2 = -25.7" cy- 2 .

This simple estimate is in close agreement with a more sophisticated calculation by Brosche
and Siindermann, who obtained a result of -26.06" cy-2 .[4]

From (6), we find that the rate of change of the earth's rotation is

Pt = -5.6 x 10-22 rad sec- 1 .

Based on this rotation rate, the loss of energy of the moon, from (2), is

Et = -3.3 x 1019 erg sec-1 = -3.3 TW

which, despite our idealizations, is in fairly good agreement with more sophisticated astro-
nomical calculations of 3.75 ± 0.08 TW for lunar dissipation. [5]

5 Terrestrial Coordinates and the Traditional Approxima-
tion

In this section we consider the dynamics of a shallow fluid on a rotating planet. Later sec-
tions will introduce further approximations, which will lead us to the Laplace tidal equations
(LTE) for each vertical mode.

The Navier-Stokes equations for an incompressible rotating fluid in spherical (terrestrial)
coordinates are

Dt - o2Q+ vsin0+ [2Q+ W cos0- P +X1 (7a)
rU Cos 0 TC _ rJ pr cos 0 r

5t-- + 2 Q + u usinO + w- 4pr +r ,(b

D~w u~~2[v] v - [2Q + o(7c)
Dt [rJ r cos 0 O = 4r+ZP

I1 U P + ( C s 0 0 1 (r 2w = O (7 d )
r cos o [u¢ + (v cos=)0 ] (0

where 0 and ¢ are the latitude and longitude, 4 is the geopotential, and X (X, Y, Z)
represent dissipative forces. The advective derivative, D-q, is

D, 9 u 0 v 0 0D'- t r+ +w-r
5- rcos90 0

and the self-gravitating potential of the earth, including centrifugal forcing, is

-) GME +A(r,0) 192r2cos20, (8)
r 2
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where A(r, 8) describes the deviation of gravitation from that of a spherical earth.
The centrifugal forcing of the earth causes the earth to deform, so that the equilibrium

shape is closer to an oblate spheroid than a perfect sphere. But since the geopotentials are
also deformed to match the shape of the earth, this tends to produce a situation that is only
a slight distortion of the purely spherical dynamics. Veronis [6] has shown that the actual
dynamics can be explicitly written as a perturbation series in terms of the ellipticity of the
earth, e, with the leading order equations corresponding to dynamics on a sphere of radius
a = 1 (req + rpole) and a uniform gravitational acceleration. The errors are more or less21

bounded by le & -I-, or 0.5%, so it is generally reasonable to treat the earth as spherical
if we restrict ourselves to large-scale flows.

The full set of equations satisfy the usual conservation laws. For example, if we neglect
gravitational and dissipative forcing, the kinetic energy of a fluid parcel is balanced by the
work due to pressure,

D, [u 2 + V2 + Wfl2.] UVp (9)
Dt 2 jP

and the angular momentum is balanced by the pressure torque,

D- [rcosO(u+ OrcosO)] = P. (10)
Dt p

When integrated over the earth, both quantities are conserved.
From incompressibility (w <« u) and a shallow water aspect ratio (H < L), we expect

a scaling where W < U and that it is reasonable to neglect the centrifugal and Coriolis
forces involving w and to replace r by a. But these changes also disrupt the conservation of
energy and angular momentum unless we also neglect the centrifugal and Coriolis forces in
z. This so-called traditional approximation is not always justifiable from scale analysis for
flows of a homogeneous fluid shell , but it does produce a set of equations that is generally
consistent with terrestrial fluid flow.

After applying the traditional approximation, we have

Dsau - [2Q + u ]vsin =_ P0 +X, (Ila)

Dt acos l pa cos 0
Dsav + [2Q u ] PlusinG = + Y, (llb)

Dt L cos0 pa

DsaW Pz
Dt - g-g+Z, (11c)

1

acos9 (uP + (vcos9) 0 ) + Wz = 0, (lid)

where z = r - a is the displacement from the earth's surface, Dsa/Dt is the advective

derivative with r = a, and g = GME/a 2 is the radial acceleration due to the (now spherical)
geopotentials.
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6 Boussinesq Approximation

Because density variations are expected to be small, it is appropriate to introduce a Boussi-
nesq approximation, where we only consider small variations from a hydrostatic basic state.
Let P0 denote the hydrostatic pressure, and also let P0 be the mean density and po(z) the
steady state variation from 7P. Then since u = 0 and X = 0 at equilibrium, P0 = po(z) and

dz - (To+ pO) g- (12)

So if p = p0 + p' and p = P0 + p0 + p', then the hydrostatic balance is removed and, to

leading order in density, the equations are

Du 2 Qa 1 vsinO=- +X, (13a)

Dt a cos 0-oa cos 0
Dr [ u po
Dv + 2Q +la-cos uin - Pa + Y, (13b)

Dw P'2  g=-- + Z, (13c)
Dt Po Po

acos0 (u¢ + (V cos )o) + Wz = 0, (13d)

D_ (p0 + P) = 0, (13e)
Dt

where the thermodynamic incompressibility equation has been written explicitly, and the
advective derivative subscript has been dropped.

Since the study of tidal dynamics focuses on the generation and propagation of grav-
itationally forced tidal waves, we will use the linearized Boussinesq equations. If we also

assume that the perturbation flow is hydrostatic, then the system of equations for freely
propagating waves is

ut - (2Q sin O)v =- P (14a)-p0a cos 0'

vt + (2Q sin 0) u -- (14b)
p0 a'

0 = -Pz g_ ,- (14c)

Po P0
1

a cos0 (u + (v cos O)o) + w= 0, (14d)

Pt = TO N2W, (14e)g

where the buoyancy frequency is

1
N ( z ) g - o - 2
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and primes have been dropped. The vertical velocity w becomes a diagnostic variable that
can be computed from the density (thermodynamic) equation.

The original system was assumed to be incompressible. If we had included compressible
effects, then the only major difference under the Boussinesq approximation would be that
the buoyancy frequency is

N(z) = dpo _ g'

where c is the speed of sound.

7 Vertical Mode Decomposition

Under certain situations, such as in the absence of a mean flow and with flat topography, we
can decompose our solutions into a set of vertical modes, where each mode corresponds to
the flow of a shallow water fluid. This provides an interpretation that relates the stratified
continuum to a sequence of layered fluids, and isolates the barotropic waves (the unstratified
dynamics) from the baroclinic waves. The analysis here closely follows Pedlosky.[7]

For a flat bottom (at, say, z = -D,) we can separate the variables of the problem into
a function of z and a function of horizontal and time variables so that

u = U(O, O, t)F(z),

v = V(O, 0, t)F(z),

w = W(O, 0, t)G(z),

P = Po9g((, 0, t)F(z).

When we insert these expressions into the equations of motion, the horizontal momentum
equations become

Ut - fV - g(¢

a cos 0'
Yt+ fU- -

a

Now let us apply these forms to the continuity equation,

UP + (Vcos0)0 - _ Gz
acos + acosO F

All terms except the ratio (--) are independent of z while each term of this ratio is a
function only of z. The only way this can hold for every z is if both sides equal a constant.
Let us define this constant as

Gz 1
F h"

Then the continuity equation becomes

UV (V cos 0) 9  W

acoso + +cos0 h
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Applying the separable forms to the adiabatic equation yields

WG N 2

F, g

which becomes
G N 2

G,, gh

Again we see that because ( and W are not functions of z the coefficient of W must be
constant. We can choose this constant to be -1 without any loss of generality (a different
constant will only change the definition of h). With this choice the adiabatic equation

becomes
Wt=W.

This choice yields an equation for G,

N 2

Gzz + NG = 0.
gh

This is a homogeneous differential equation with, generally, non-constant coefficients since
N is a function of z and there is a free parameter h. The problem is not complete until the
boundary conditions are established. In order to have w vanish on z = -D, we must take

G(z) = 0, z = -D,.

At the free surface with a shallow water assumption the conditions are that the free surface
displacement, which here we will call ZT satisfies

aZT
w = WG(ZT) = -t

While the total pressure is atmospheric pressure, which we will take to be a constant (zero),
thus

Ptotal = pO(ZT) + g9F(ZT) = P0(0) + -- ZT + . + pog(F(O).
dz

Now keeping only linear terms let us derive the former equation with respect to time and
combine it with the linearized kinematic equation,

O . + pog~tF(O),
dz 61

0 = -pogWG(O) + pog~tF(O),

pogWG(O) = pog(tF(O).

But, from the continuity equation we know that,

(t = w,

thus,
G(o) = F(O) = hGz(O).
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Which means that the final condition for G is,

G,-G/h=O, z=O.

Let us summarize the equations for the resulting eigenvalue problem,
G,, + NG 0,

G = 0, z = -D.,

Gz - G/h= 0, z = 0.

Using the relations between F and G we obtain as an equally valid alternative problem,

Fz = 0, z =

Fz - L- F = 0, z=0.

The advantage of the second formulation is that the eigenvalue h is not in the boundary
condition. These equations can either be solved numerical for a varying N or examined
analytically for the case of a constant N.

7.1 Vertical Modes For Constant N

Let us derive h for the case of a constant N. In this case the solution for G(z), which
satisfies the boundary condition at z = -D. is

G = Asinm(z + D.), m2 N2
' - gh'

where m is the vertical wavenumber of the solution. The eigenvalue relation for h is obtained
from the boundary condition at z = 0, and yields,

m cos(md) - I sin(md) = 0,

or,
N 2

tan(md) = mh = gN,
gm

or,

tan( rod) - d 1
g md"

We note that

N 2 d d dp Apod _ •-- __ « ----- <1.

g p0 p0

Thus, the roots of the dispersion relation split into two classes. The first class has roots
for which md is order 0(1). In that case the right hand side of the dispersion relation is
essentially zero and the solutions correspond to the zeros of the tangent function,

md=j7r, j=1,2,3,....
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In this approximation, there is an infinite number of roots corresponding to

d

Therefore, from the definition of m we get,

N 2 d2

h -gj 2w72 .

From this we can easily see that the modal structures are,

Gj =sin 3dZ, j =1,2,3,...,

Fj=cos d , j=1,2,3.

Now let us consider the second class for which md is not of order 0(1) but, rather,
md -- 0. Then, the dispersion relation becomes,

N 2 d 1
tan(md) _ md =

g md

Therefore, from the definition of m we get,

ho == d,

which gives us the barotropic mode of zero vertical velocity with m 0 < 1 due to the almost
no variation of F 0 in depth.

7.2 Vertical Modes For Slowly Varying N

Instead of assuming that stratification remains constant, a more realistic assumption would
be to assume that N is slowly varying in some sense, for example if dN/dz < N/1 for some
length scale 1, such as the characteristic mode depth. If this remains true, then we can find
an asymptotic solution using WKB methods.

If we rescale our equation in terms of a slow variable Z = cz, then the field equation for
G is

f2Gzz [N(Z/+)]2 G = 0. (15)gDn

Since N is approximately constant, we have a WKB solution of the form

G - exp [1So(Z) + Si(Z)1.

After substitution into the differential equation and matching powers of e, we find that

Si(Z) = N(Z'/c)dZ', (16a)
1

S1 (Z) = - In [N(Z/e)], (16b)
2
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Figure 2: The solid line is the curve for tan a and the dotted line is for ac-. The intersection of the curves
correspond to the roots of the equation a-' = tan a. As a increases, we see that the roots approach a = 7rn.

so that G, in terms of z, becomes

-(z) - e1 L D .exp. N(z') dz'

where by ±, we mean that G is some linear combination of each solution.
We must now apply the boundary conditions to obtain a complete solution. From the

surface condition, G(z) = 0 at z = -D,, we see that

G(z) sin [ Y1  j N(z')dz'] . (17)

From the upper condition, Gz - G/Dn = 0 at z = 0, and using the fact that dN/dz is small,
we find that

N l. tan [ D fD. N(zl)dzf] (18)

If we let an - N9 Dn' then solving for Dn is equivalent to solving for a, in the equation

1
- = tan (kan), (19)
an

where k = 0 f- N(z')dz'. The solutions to this equation for k = 1 are illustrated in
figure 2. We can see that the roots correspond to an = 7n/k as n becomes large so that

[f D. N(z')dz']
g7r2n 2  (20)
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Although this is only formally correct for large n, the error is often small even for n = 1,
and the accuracy only improves with increasing n, so that the WKB solution can usually
be safely applied to the entire baroclinic spectrum.

8 Laplace Tidal Equations

From the above equations and the modal solution with respect to the z axis we can derive
the Laplace tidal equations,

(t - fa) - (1
a cos 0'

Vt + fvU= - o (21b)
a

U + (Vcos0)0 W
acos0 acos0 - = 0, (21c)

ýt == W. (21d)

And if the two last equations are combined,

Ut-fV=- (0(22a)
a cos 0'

±t + fU - g(, (22b)
a

____ (Vcos0)o'\
(o+shj U + =0. (22c)(a-cos 0 a c-s O )

This set of equations for each mode was considered for a flat bottom and with no external
forcing. The friction and the tidal gravitational potential (TGP) can be introduced by
simply decomposing these functions into their vertical modes. But since the TGP does not
vary significantly across the shallow depth of the fluid, only the barotropic mode is excited
noticeably when the bottom is flat, despite the fact that actual observations show strong
baroclinic tides.

Although we will not discuss how to approach the full baroclinic case, we can consider
the barotropic mode over a variable topography with a weakly elastic bottom (due to the
elasticity of the earth). In this case, let D(O, 0) describe the mean depth of a homogeneous
fluid, and 3 denote the displacement of the elastic bottom. Then the equations for the
barotropic mode are generalized to

ut - (2Q sin O) v acos +hF (23a)a cos 0 pD'

vt (2Q sin )u = g( - r/g)° + F (23b)
a pD'

( t (t _- 1 F 1

acos------O(uD)¢ + (vDcos0)] = 0, (23c)
a cos9 0 ~
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where F is the total tide generating potential. We will refer to these as the LTE. Note that
an equation for the dynamics of the elastic bottom must be included to fully describe the
system.

Notes by Yaron Toledo and Marshall Ward.
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Lecture 3: Solutions to Laplace's Tidal Equations

Myrl Hendershott

1 Introduction

In this lecture we discuss assumptions involved in obtaining Laplace's Tidal Equations
(LTE) from Euler's equations. We first derive an expression for the solid Earth tides.
Solutions of LTE for various boundary conditions are discussed, and an energy equation for
tides is presented.

Solutions to the Laplace Tidal equations for a stratified ocean are discussed in §2. We
obtain expression for solid earth tide in §3. Different models of dissipation are examined in
§4. Boundary conditions for LTE's are discussed in §5. In §6 the energy equation for LTE's
is derived.

2 The Laplace Tidal equations for a Stratified ocean

To obtain the LTE for stratified ocean we assume pressure is hydrostatic and seek seperable
solutions of the form

U(x, y, z, t) = U(x, y, t)Fu(z),
w (x, y, z,t) W (x, y, t)F,(z),
p(x, y,z , t) = z(x, y, t)Fp(z).

The LTE for stratified ocean are

Ut-fV=-gZx , (1)

V--fU=-gzy , (2)
Zt + Dn(U.+ Vy) 0 (3)

N 2
Fw2 + -F =O0 (4)

gDn

where n is an index for the normal modes in the ocean. These equations are the constant
depth LTE but where Dn is the equivalent depth of each mode, and D, $ D,, rather

[ fD. N(z')dz']
2
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and N(z) is the buoyancy frequency. For the zeroth mode or n = 0, D, ; D. The eigenvalue
problem in (4) can be solved to determine the D, using the following boundary conditions

F=0 at Z=-D.,

Fw-DnFw2 =0 at Z=0.

2.1 Barotropic Solution (n = 0)

The normal mode equations described above and indexed by n an integer can be solved for
specific modes. The zeroth order mode is given by n = 0 and is also called the barotropic or
external mode. It is characterized by a solution which is depth independent. Below we will
solve for the barotropic mode without rotation and no variations in the y direction (f = 0

and O/Oy = 0). If we assume a plane wave solution, solving (1) - (4) gives,

O = ae -- it+ikx

U0 = a (g) e-iot+ikx

a = ±kvlgD..

Figure 1 shows the barotropic solution for velocity. For the semidiurnal tidal frequency, the
phase velocity of the zeroth mode wave, given by co = g-D = / = 200 m/s. Since this
speed is also given by A/T, where A is the horizontal wavelength of the wave (distance from
wave crest to wave crest), then A = 8640 km. This wave is very fast and very long. For the
case of no rotation this wave is dispersionless, but not when f $ 0.

2.2 Baroclinic Solution, Mode 1 (n - 1)

The first baroclinic mode, indexed by n = 1 is also called the first internal mode. The rest
of the modes for n > 1 are also internal modes and have more variation in depth. We can
solve (1) - (4) for n = 1 without rotation and with no variations in y (f = 0 and D/&y = o)
giving the first internal mode,

n= ae-iut+ikx

FUZ = D, )

FW, = sin(7r(z +zD*))Fw 1 +

cr =±k VgD1.

The mode one solution is shown in figure 1. For the baroclinic modes, the phase velocity
and horizontal wavelength are given by

NoD, = (1.45 x 10- 3 )(4000m) _ 1.85 m/s
n7• n7 n

80 km
"Atidal =8

n
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So the lower modes travel more quickly, and have larger horizontal scales. The M 2 internal
tide is found primarily as a mode 1 tide throughout the world's oceans, while higher order
modes tend to dissipate nearer their source. Due to recent (last decade) improvements, the
M 2 internal tide can now be seen by satellite altimetry. The ocean surface displacement
due to internal tides is given by

Wfree surface NoD-4___________ - * 3 x10- 4 ,

Winterior maximum gn~r

which means that for an internal tide displacement of isopycnals on the order of 100m
(which is quite large but not impossible), the surface expression would be about 30cm,
easily resolved by satellite altimetry measurements which have accuracy on the order of a
few centimeters.

//

0-5000 /I

Figure 1: (a) Barotropic or depth independent solution for u velocity. Wave amplitude is
greatly exaggerated. (b) Mode 1 solution for u and w velocity.

2.3 Numerical Solution to LTE

Tihe complete problem that we would like to solve numerically to estimate the tides are the
stratified linear equations,

ut - fv= - + I, (5)

P0
Vt + fu -50- 0 y (6)

PO
(t + (uD)5 + (vD) 0 = 0, (7)

where r is full tide generating potential and D(x, y) is the bottom topography. The domain
is defined by the coastsoc or deptinepedocean bottom and free surface. However, in order
to solve this system of equations one must resolve short horizontal scales due to bottom
topography where the bottom boundary condition on w is w = -u L VD. Very few current
modes are capable of this, though some have begun to resolve mode e in their simulations.
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Instead the Laplace tidal equations for u and v may be substituted, of (5)-(7).

ut - fv =-gx + Fr, (8)

Vt + fu - -g(y + Fy, (9)

where ( is the free surface and a smoother bottom topography is substituted,

w = -u. VDsmooth. (10)

However, because ( is no longer a function of z while p in (5)-(7) was, we cannot determine
u(z) and (8)-(9) will only give the barotropic solution.

In the literature, the TGP is usually neglected and instead the barotropic tides and
stratification are specified, which allows the simplification of (5)-(7) as

ut-fv- PX, (11)Po
vt + fu = PY. (12)

P0

From this, the internal tides result from a single scattering of the barotropic tide by bottom

relief Wirnt = UB • VD(x, y). In particular, if we decomposed D into low- and high-passed
components,

D(x, y) = D 1 0(x, y) + Dhi(X, y). (13)

Then the ( equation and bottom boundary conditions become

(Ot + V . (UBDlo(x, y)) = 0,
Wint = UB• VDhi(X, Y).

And the internal tide results from the bottom topography. However, this neglects multiple
scattering from the topography and does not apply when the bottom slope is greater than
the characteristic slope of internal waves. Currently, numerical models like the Princeton
Ocean Model (POM) solve the (5)-(7). An example of numerically solved tides is shown in
figure 2. In this paper, all tidal constituents were solved for using a hydrodynamic model
and data assimilation from tide gauges and altimetry [11.

3 Solid Earth Tide

It has long been known that Earth's crust yields elastically to the tidal forces of the moon
and sun. If we consider earth to be an incompressible elastic solid, then we can write
equations for the deformation of the Earth as the following

-Px + PV 2u = 0, (14)

_Pz + /LV2W 0. (15)

where, p is pressure, (u, v) are the velocity and [t is viscosity of earth (see figure 3). Using
the following boundary conditions,
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Figure 2: Cotidal map of the M 2 component. Coamplitude lines are drawn following the
scaling indicated below the map. Units are in centimeters. Cophase lines are drawn with
an interval of 30', with the 0' phase as a larger drawing, referred to the passage of the
astronomical forcing at Greenwich meridian [1].

U, w -* 0 as z -- -0c,

Txz = 2 1(uz + w,) = 0 at z = 0,

Tzz = -p + 2pwz = -load =_ -p.gaeikX,

where term pwgaeikx gives the loading on earth surface due to ocean tide, a is the tidal
amplitude and k is its horizontal wavenumber, we solve (14) and (15) with the above b.c.'s
for a load of pwgaeikx to get an Earth surface wave displacement of

hpwgaeik , (16)

where h is called "Love Number". In this case, h - k

4-- 
Z0

C 6
a 0F z=-D

Figure 3: Solid earth tide, ( is geocentric surface tide and 6 is geocentric solid earth tide.
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We can then write the tide generating potential in spherical harmonic (n) decomposition

including the solid Earth tide as,

r. = U, + kUV + qa,(on + knqaon~ , (17)

where Un is obtained from astronomy, knUn is earth yielding to astronomical potential,

qan(on is potential of tidal shell and k'qan(on is earth yielding to tidal potential.

Proceeding as above, solid earth tide is given as,
n .h +- h+ (18)

g

kn, k', hn and hn are all "Love numbers" similar to h in (16). From (17) and (18) we find

( = (+ k - hn U + (1 + k' - h'n)O(no (19)

And upon summing up this series we get Farrell Green's function [2]

S(1 + kn - hn)Dan(°n = f dO'dO'GF(O, O'lO0, 0) (OW, 0')" (20)
n n n

Now taking into account the solid Earth tide, we can rewrite Euler's equations from

Lecture 2 as

( - ,(21)
u - (2QsinO)v = g(O - (F/g - ))o + -F (22)

a cosO pD (

Vt + (2Q sinO)u = g(Co - (r/g - 6))o +F
_+ -- ()

a pD (

((Ot - 6t) + a 0o[(uD)O + (vD cosO)o]=-EI (I +kn-hn)Unag
(24)

- f J d0'dO'GF (0' 10, 0)(o(01, 01)

where U is mostly U2 , k2 z:ý 0.29 and h 2 • 0.59.

4 Dissipation Models

It is not easy to estimate the dissipation terms (F0 and FO) in (22) and (23). This dissipation

is mainly due to bottom drag and internal tides. If we model it as bottom drag, we get

E = -pCDIu__, (25)

where CD z 0.0025 known from direct measurement in shallow water. The direct effect

of (25) is that most of dissipation is limited to shallow seas where u and CD are large.

However, global tidal computations are mostly confined to deep-water zones for practical

reasons (shallow water tides require much finer grid-spacing). So dissipation can only be

properly represented by radiation of energy out of the model into bounding seas.

There are two main empirical models used to get an expression for dissipation in deep

oceans. These are,
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Figure 4: Jayne & Laurent model, dissipation due to barotropic tide scattering into internal

tides over rough topography.

Jayne & Laurent In their runs of the Hallberg Isopycnal Model (HIM), the dissipation

term is modeled as, "1

F = -2pkh 2 NbU. (26)
2

This model is based on assumption that dissipation occurs due to barotropic tide scat-
tering into internal tides due to the rough bottom topography. h represents the height
of bottom topography whose dominant horizontal wavenumber is k (see figure 4).

Arbic In his runs of the HIM for the dissipation term we have,

F = -p wVh

= p(VX . u)Vh, (27)

where,

X = 27ra Ix --x'x dx'dy' (28)

for tide of frequency a. Nb is buoyancy freqency, f is the Coriolis parameter and h(x)
is bottom topography. Arbic's model is based on the assumption that tidal dissipation

can be calculated by finding the pressure drop in tidal currents across topographic
features at the bottom.

5 Boundary Conditions

Laplace tidal equations have never been solved well enough so as to remove tides from
altimetry without data assimilation. Different methods use different boundary conditions
for solution of LTE at numerical coast. Some of the main boundary conditions in use are,

1. u. h = 0 at the numerical coast.
This is the most commonly used boundary condition. This boundary condition rep-
resents a no-energy-flux coast. It is important to have correct information regarding
dissipation if this boundary is used since all energy must be dissipated within the sys-
tem. Numerical schemes need to resolve -pCDU1ýuI well which requires high resolution
in shallow waters.
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2. ( =b, at the numerical coast.

This boundary condition allows a energy flux (pgDju__. ho) through the coast. The
scheme is less sensitive to the details of the dissipation model used, and is less sensitive
to the discretization used. However, this system can still respond resonantly. Another
problem with this scheme is that observed tidal data is not easily available along all
coasts.

3. ( = c (u. h) at the numerical coast.
This boundary allows energy to be dissipated at coast. In this boundary the parameter
c can be adjusted so as to get results to match the observed tidal results. This leads
to an energy flux of < pgDc( 2 > flowing out of the coast.

6 Energetics

If we ignore the solid Earth tide, we can derive equations of energy and perhaps estimate
dissipation due to the tides as a residual. Starting with Laplace's tidal equations,

ut - fv = -g(( - F/g). + FX/pD x puD

vt + fu = -g(( - r/g)y + Fy/pD x pvD

(t + (uD), + (vD)y = 0 x pg(

Then multiplying by the terms at right, adding the three equations together and assum-
ing that p, g and D are constant, we arrive at

1 1 2
-IpD(u2 + v2 )t + gpg(( )t + V . (pg(uD) = p~tF + V . (puDF) + u . F (29)
2 g

Fluid crossing Fluid crossing Work by
KEt + PEt + V -Eflux = equipotentials + equipotentials + dissipative (30)

vertically horizontally forces

where KEt is the time derivative of kinetic energy, PEt is the time derivative of potential
energy, and Eflux is energy flux.

Energy Averaged Over One Tidal Period, Integrated Over the Ocean

It is convenient to consider the energy as averaged over one tidal period. For a periodic
tide, let < • > denote the average over one period. This will simplify the above equations,
since

< KEt >=< PEt >= 0. (31)

Then from (29) we are left with

7.<P>=< Wt >+<u'F>, (32)

where P is energy flux and Wt is the working by potential vertical and horizontal forces.
Now if we reconsider, the case of the basin with no flow through its boundaries

('i. < hz >= 0), then we further have that f V- < P > dxdy = 0 since there can be no
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net energy flux into or out of the basin. Then we can integrate the remaining terms in the
energy equation over the ocean basin and find that

f<Wt> dxdy =joean p~tldxdy = - oean <u F> dxdy. (33)

One caveat is that the solid Earth tide is not dissipation free, i.e. the Love numbers are
complex, but this equation is true provided that they are real. Now, since - f < u.F > dxdy
is balanced by working of fluid moving up and down. This fluid movement ( can be measured
from global altimetry, giving an estimate if dissipation of energy due to the tides.

6.1 Including the solid earth tide

If we now include the solid Earth tide, then our third equation becomes

(C- 6)t + V. -9D = 0 (34)

and if we follow the same procedure as before we have

KEt = -V. (pgDil(( - F/g)) + pg(( - F/g)V . i1D + u. F

= -V. (pgDii(( - F/g)) - pg(( - r/g)((t - 6t) + il. F

= V pDur + p(C - j)tr - V . pgDu( - pg((( - 6 )t + u. F.

Similarly for potential energy,

PE = pgzdz = -pg((2 - (-D + 5)2),
.- D+6

PEt = pg(55t - (t - D~t).

Adding these together we find that

KEt + PEt + V . (pguD) =V . pDur + p(( - 6)tr+ u . F

- Pg(((t - bt) + pg(C(t - 66t + D~t)

V . pDuF + DuP + p(( - 6)tF + u. F + pg(( - 6 + D)6t.

Then if we consider the observed tide only, Co = C - 6, the difference between the ocean
tides and the solid earth tide, we have the energy equation.

KEt + PEt + V = Wt + u. F, (35)

with

KE pD(u 2 + v2 ), (36)
2

PE I !pg((o + 2Co6 + 26D), (37)

P = pgDii(o + 6), (38)

wt p¢o0r + pv . uDr + pg(Co + D)6t. (39)
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Energy Averaged Over One Tidal Period, Integrated Over the Ocean

If we again average over one tidal period, then

V. < P >=< Wt > + < u.F > (40)

Given altimeter data (1 it may be possible to map < u. F > [3].
If we further assume that the tides are periodic as (e-iot), then noting that in the

equation for Wt that focean pV • uDr 0 and < pgD~t >= 0,

j< Wt > dxdy = -Re {into - op~oP* + io9gpco r},

where (.)* is the complex conjugate. Using the Love number decomposition from §3,

j < Wt > dxdy = •Re E -iop(on ((1 + kn)u* + gcen(on + kngcen(C•n)

iu~on (hnun + JhnoannJn)

=-Re•_ -iap(1 + kn - hn)(OnUn*. (41)

n

This last equation is true provided that the solid earth tide is dissipation-less, that is to
say, that the Love numbers are real. Now, since again focean V. < P > dxdy = 0,

<ca 1 - xy= <W xy=IR f -io-p(1 + kn - hn)(O.nu* (42)
Lean ceanW2 n

and we can estimate the dissipation of energy due to the tides if we know the observed
tides, (o.

Notes by Vineet Birman and Eleanor Williams Frajka
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Lecture 4: Resonance and Solutions to the LTE

Myrl Hendershott and Chris Garrett

1 Introduction

Myrl Hendershott concluded the last lecture by discussing the normal modes of the ocean,
i.e. the free wave solutions of the Laplace Tidal equations. Today, we will review these
concepts and extend them to so solve for specific instances of gravity and Rossby modes in
simple basins. We will then discuss the computation work of Platzman [1] on the normal
modes in the oceans and describe resonance in the seas.

The second half of the lecture was given by Chris Garrett and served as an introduction
to his lectures during the second week. He motivates the study of tides by discussing them
in the contexts of observations at several different geographical locations. He then adds to
Myrl Hendershott's discussion on resonance with observations and some inferences about
friction.

2 Review of Normal Modes

In plane coordinates, the Laplace Tidal equations (LTE) are given by

ut- fv = -g(., (1)

vt+fu = -g(y, (2)

(t+D(u,+vy) = 0, (3)

where f = fo +f3y and D = Dn, where D, is a constant determined by an appropriate
eigenvalue problem discussed in the previous lecture. To find free solutions of the LTE we
look for harmonic solutions, i.e. solutions with time dependence proportional to e-iat which
can be seen as transforming the time derivatives by

at (4)

That is, the LTE become

-iu - fv = -g(, (5)

-iav + fu = -g(y, (6)

-io- + D (u, + vy) = 0. (7)
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Solving for u and ( in terms of v, the LTE can be reduced into a single second order partial
differential equation for v. We find that

. -2 _ f 2

Vvv + i -vx + V = 0. (8)
0- gD

If we seek plane wave solutions for v i.e. v = e-t+ikx+Y, then (8) implies that

-k2 12 /3k a2 _f2 0  (9)k2- 2- -- + -o.D9
U- gD

This relation between k, 1 and o- is more useful when rewritten as
( ( (10)

We see from this equation that high and low frequency waves have significantly different
character in the k - 1 plane. High frequency waves, correspond to /3 = 0 which give circles
centered at the origin with wavelength ((o2 - f2) /gD)/ 1 2 . These correspond to gravity
modes which are characterized by a > f and are discussed in Section 3. For low frequencies,
we have circles centered at k =/3/2o-, 1 = 0 with radius less than /3/2a so that the circles
are entirely in the k > 0 plane. These are known as Rossby modes and are discussed in
Section 4.

A third type of free wave is due to the influence of rotation. These "Kelvin" waves
move along the direction of the physical boundary, e.g. the coast of a continent, and decay
in magnitude as the distance from the boundary increases. For large enough basins, sum
of the normal modes consist of an integral number of Kelvin waves around the boundary.
An example of this will be seen in the discussion of gravity waves in a circular basin in
Section 3.

3 Gravity Modes

It is instructive to solve the LTE in the context of some very simplified cases first, because
the resulting motions are simplified illustrations of the true dynamics. If there is no rotation
(f = 0), the LTE are given by

ut =()
vt = -g~y, (12)

(t+Do(uz+vy) = 0, (13)

with the boundary condition that
u.n f = 0 (14)

at the coast, where fi is the unit vector normal to the coast. Substituting (11)-(12) into
(13), we attain a Helmholtz equation:

V2( + (, 2 /gD)( = 0, (15)

with
V( . fi = 0 (16)

at the coast.
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3.1 Square Basin

We first consider a rectangular basin (Fig. 1) with A > B. A general solution can be found
by substituting

(nm .e-ianmt Cos nx cos (m7ry) (17)

into (15), which gives the dispersion relation

2rm= ~ [n~r)2 + (mlr)2] .(8

The gravest mode is then given by

-I 2 (19)

where A is the length of the longer side. For all subsequent modes of oscillation,

Tmn > 2DA (20)

A

Figure 1: Rectangular ocean basin.

3.2 Circular Basin

In the real world, of course, ocean basins are not rectangular. The next general case that
we can consider is that of a circular basin (figure 2). In this case, it is helpful to transform
(15) to polar coordinates:

+ I+o+0 2 _(=0, (21)
r r2  gDO

with boundary condition

(rlr=a = 0- (22)

The general solution, which can be derived using separation of variables, is then given by

(ris =Js(Knsr)ei-s~ic~ (23)
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The appropriate eigenvalues for the in, are determined by the boundary condition; that is

J,(K,,a) = 0. (24)

Finally, the dispersion relation, obtained by plugging (23) into (21), is
2 gDorn. (25)

This dispersion relation produces an ascending sequence of eigenfrequencies, ao.

r

Figure 2: Circular ocean basin.

3.3 Circular Basin with Rotation

We can now add rotation to the problem in a simple way, but setting the Coriolis parameter
f = fo. For simplicity, we will keep the depth constant (D = Do). The tidal equations are
now given by

ut- fov = -g(., (26)

vt + fou = -g(y, (27)

(t+Do(u.+v.) = 0, (28)

with the boundary condition, as before, given by (14). The Helmholtz equation can then
be similarly derived, and is given by

(a2 - fX 0
gDo

with the boundary condition
-ia7¢ - fo0s = 0 (30)

at the coast.
Separable solutions now occur only in a circular basin. In polar coordinates, the

Helnholtz equation with rotation is given by

+ (r C + a2 _ fO2 0, (31)
r r2 gDo
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with boundary condition

-ir fo A = 0. (32)
a

The general solution is again given by (23), but now with a modified dispersion relation,

= f02 + gDo'ns. (33)

For s = 0 (that is, no wave in the radial direction), the solution, boundary condition, and
dispersion relation are given by

(no = JO(Knor) Ont (34)

J0(,noa) = 0, (35)
2 (36Ono = gDono. (36)

The boundary condition given by (35) again fixes tino, with an ascending sequence of positive
eigenfrequencies following. This case is just like the case of no rotation (fo = 0), except
that particle paths will now no longer be radial. For s 7 0, substituting the dispersion
relation given by (33) into (32) gives

-iornsfs(•nsa) = f JiS Js(Knsa) = 0, (37)
a

which fixes rn,. Solving (37) for a and substituting (33), we have

-J.-(a) - 1 + , (38)

where

13 "- 0 a 2 (39)
gDo

is called the Lamb Parameter.
Solutions admitted by this problem are given by the roots of (38), as illustrated in figure

4. For a given s, and fo -- 0 (and, consequently, /3 -+ 0) the roots are given by (Ka) 2 > 0
pairs near the Jil(ra) = 0 line. As fo and /3 increase, (ra)2 pairs move farther apart, and
a new root appears, with (ra)2 < 0. For this case, r,, and therefore the argument of the
Bessel function in (23) will be an imaginary number. The radial part of the solution is then
given by a modified Bessel function,

Is(rcr) = i-nJn(ix) = e-n~ri/ 2JA(xei•/ 2 ), (40)

which decays away from the boundary. Figure 3 shows the dispersion relation given in (33)
for a fixed s and different n. The pairs of eigenfrequencies corresponding to the Ka pairs
in figure 4 can be readily seen; they are gravity waves propagating in opposite directions.
The (Ka) 2 < 0 mode is the Kelvin Wave.
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Dispersion Relation

0

Figure 3: The dispersion relation (33) for different values of n. The Kelvin modes are shown
by the dashed line.

• sLHS •

RH, beta = 6

RHS, beta = 40
20 • ,o60 so

Figure 4: Illustration of the roots of (38). The curves opening to the right correspond to the
right hand side of (38) for different /3 (with 83 increasing for tighter curves. The asymptotic
function is the left hand side of (38). For this case, s = 2.
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4 Rossby Modes

4.1 Linear Models for Rossby Waves

We now return to the Rossby modes. As discussed earlier, these are the low frequency
solutions of the LTE in plane coordinates. Now defining the vorticity, ý, in the usual way,
i.e.

S- Uy, (41)

we rewrite the shallow water wave equations to give

S-- = 0, (42)

where D/Dt is the material derivative, i.e.

D 0 a a-Dt - a + u-x + V57y"
Dt at O9X

Recalling that f = fo + /3y and D = Do + C we linearize (42) with respect to {, 4, u and
v to find an equation for the time evolution of the vorticity.

D (ý+f) D(ý +fo +/ 3y (fo +Qy))
Dt D Dt Do D(

't foCit + (43)
Do D+ Do'

where we have assumed that fy < fo to neglect the term proportional to 3yC.
Since Rossby waves are low frequency waves, ut < fov and vt < fou so that

-fov ,z -gCx fou • -gCy. (44)

Substituting (44) into (43), we find that we can rewrite (43)
9 ~ fo Og (5
foo (Cx +( CY) - fT + - 0. (45)foDo 0 fo o

Multiplying (45) through by foDo/g (45) becomes

V ( f_ (tt +(13( = 0. (46)V2t gDo]

By considering the boundary condition on the coast, we can further simplify the vorticity
equation for Rossby waves. As in the earlier discussion of gravity waves, at the coast we
must have

u.fi = 0,

so that if we define a local coordinate system at each point on the coast with the 9 direction
tangent to the coast, we must have C= 0 so that

Ccoast = r (t), (47)
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i.e. that value of • is the same everywhere on the coast though it may be allowed to vary
in time. For sufficiently short waves,

v 2 c» gD0 f (48)

so that to leading order (46) becomes

V 2ct +i3(, = 0. (49)

Since the boundary condition is independent of space, the time dependent boundary con-
dition can, to leading order, be absorbed into (, so that (49) can be solved under the
condition

Gcoast = 0. (50)

4.2 Rossby Waves in a Square Basin

Suppose that ( is periodic in time with frequency a. That is, suppose that ( can be written
in the form ( (x, y, t)= R f{e-i'tb (x, y)} (51)

Substituting this expression for ( into (49), we find that 4b satisfies the following boundary
value problem.

V2�2+ ax 0 "-, coast = 0. (52)

To remove the x-derivative from (52) we further substitute

S= e-!x/ 2 a¢ (X, y) (53)

into equation 52 we find that ¢ satisfies the boundary value problem

,20 + A20 = 0, q'oast = 0, (54)

where A2 = -32/4U2.

Consider Rossby waves in the rectangular basin 0 < x < x0, 0 < y < yo. Using
separation of variables, we write

0 (X, y) = X (X) Y7 (y) (55)

and see that X and Y both satisfy equations for the harmonic oscillator. Therefore the
boundary conditions imply that any function of the form

¢ = Omn = sin- sin . nzY (56)x0 YO

with at, ni positive integers, satisfies the boundary value problem and that a is the corre-
sponding eigenvalue,

"--mn - 27r 2(m2/x2) + (n2/y2)] 1/ 2  (57)
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Note that the highest frequency modes are the ones with the smallest values of m and
n. Substituting, our solution for 0?nn into (53) and subsequently into (51), we find that for
each normal mode

F O3x 1. /
cos [2 + crmnt sin mnr-Xo sin n~rY . (58)

20Umn I r
This solution consists of a carrier wave moving to the left modulated by sine function serving
to satisfy the boundary conditions. The sine functions also create stationary nodes while
the cosine function creates nodes which move to the left.

4.3 Circular Basin

Now suppose we have a circular basin with radius a. The definitions for 0 follow exactly
the same as for the square basin leaving the boundary value problem

V20+A 20= 0, 0(r = a) =0, (59)

with A2 = /32 /4a 2.
We again use separation of variables to write

0 = R (r) e (0) (60)

to find that 0 and R satisfy the harmonic oscillator and Bessel Equations respectively.
Therefore, the boundary conditions and single-valuedness imply that any function of the
form

= =•Onr = COS (mO + a) Jm (knmr), (61)

with a an arbitrary phase angle, satisfies the boundary conditions under the conditions that

m is a positive integer, Jm is the Bessel Function of order m, and

'mn = knma (62)

is the nth zero of the Bessel function of order m. The eigenvalue for o, is then

Umn = kT2n a2 , (63)

and the corresponding eigenfunction is

(,mn =COS Ox +mnt cos(mO+a)Jm(knmr). (64)

Therefore these eigenfunctions also represent a carrier wave moving to the left creating
moving nodes modulated by an envelope of functions which create stationary nodes. In this

case the stationary modes are radial lines corresponding to zeros of cos (mO + a) and circles

corresponding to zeros of Jm (knmr).
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Figure 5: The Helmholtz Oscillator

5 Helmholz "Mass Exchange" Mode

We can solve for an additional normal mode, where fluid moves between two basins. The
problem is illustrated in Fig. 5 in which AL, DL and AR, DR represent the cross-sectional
area and depth of the left and right basins respectively. We further take 1, w, and d to be
the length, width, and depth of the connecting channel.

If we take DL, DR > d so that the fluid height, C, in each basin can be taken as virtually
constant within the basin and the connecting channel is always full. Define (L and (R as
the time dependent fluid heights in the left and right basins, respectively. The total fluid
volume in the system is

V = ALCL + AR(R + lwd (65)

and must be conserved conserved. Differentiating (65) with respect to time, we derive the
volume conservation equation:

AL ((L)t + AR (CR)t = 0. (66)

Since we have taken (L and CR to be independent of space, we can express the time rate
of change of the volume flux into the right basin as

d-AR (CR)t = AR ( •R)tt
dt

Any fluid that enters the right basin must enter through the connecting channel. If we
assume the velocity of the fluid in the channel is entirely in the lengthwise direction, then
the fluid flux into the right basin is uwd, where u is the fluid velocity in the lengthwise
direction and taken to be parallel to the x-axis. Therefore, equating the time rate of change
of fluid into the right basin gives us

AR ((R)tt = utwd. (67)

Since we have assumed that the flow in the channel is uniform and unidirectional, the
momentum equation in the channel is ut = -g(C. At the left edge of the channel, ( = CL

54



while C = CR at the right edge. Therefore, since the length of the channel is 1, C
(CR - (L) /1. Therefore, we can rewrite (67) as

AR ((R)t t ; wdgCR (L (68)

Solving (65) for (L and substituting into (68) we find that CR satisfies the equation for
a simple harmonic oscillator. That is

(CR)u + gwd + (R CR K, (69)

where K is a constant. This equation implies that the Helmholtz mass exchange mode does
represent a simple wave solution of the shallow water wave equations with

Wgelmholtz = gwd ( + - (70)

6 Platzman's Analysis

Platzman et al. [1] computed approximate normal modes of the world oceans by computing
the normal modes in the 8 to 80-hour spectrum of a numerical model of the LTE. Platzman's
analysis focuses on large-scale features of the direct response of the deep ocean to the tidal
potential, rather than coastal tides. The discretization of the model makes it an eigenvalue
problem with 2042 total degrees of freedom. The eigenvectors have the form

(ý, 0, 0) = Re[(Z, 4, AP)ei t ], (71)

where a is the eigenfrequency, ý is the free surface elevation, 0 is velocity potential, and 0
is the volume streamfunction.

Platzman et al. visualized the different normal mode motions described in the previous
sections, by contouring the amplitude and phase of the mean elevation, as well as the energy
density and flux, over the model grid. It is instructive to examine some example maps, which
illustrate different normal modes.

Figure 6 shows a sample analysis from Platzman et al., of a topographic vorticity wave,
as contained by the 14th computed normal mode, which has a period of T = 33h. The
height contour plot in this figure (left panel) shows a sort of height "dome", and the phase
lines (perpendicular to the lines of height) show the counterclockwise rotation about an
amphidrome where the phase contours are anchored. The energy diagram (right panel)
shows that energy is transported in an anticyclonic gyre, with the energy flow largely
parallel to the phase velocity of the wave. (Since the study only looked for modes with
periods between 8 and 80 hours, it couldn't clearly resolve any planetary vorticity waves.)

Similarly, Mode 12 (Fig. 7) can be understood, given the height and energy contours

as the Helmholtz resonator mode described in section 5. The energy diagram for this mode
shows a nearly uniform phase across each ocean, and the elevation contours could perhaps
be interpreted as having a "node-like band" at the junction between the two oceans. A
clearer argument for the Helmholtz resonator analogy is given by Fig. 8, which simply
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530

Figure 6: Platzman et al.'s computed mode 14, a vorticity wave near Newfoundland. Ele-
vation is contoured in the left panel, total energy density on the right. Arrows are placed
on the contour of zero phase, and point in the direction of phase propagation.

shows a polar plot of the amplitude and phase of the fluctuations in regional volume which
are induced by that particular mode.

This figure suggests that the volume of the Arctic and North Atlantic oceans are in
balance with the Indian and South Atlantic Oceans.

.7
................ ..

Figure 7: Platzman et al.'s computed mode 12, which can be interpreted as a Helmholtz
resonator mode.

Mode 12 carries less than 30% rotational kinetic energy. Mode 15 (Fig. 9) also carries
little rotational energy, though it also has a clear Kelvin Wave component in the southern
ocean, with phase lines parallel to the coast of Antarctica, and eastward energy propagation.

As for gravity modes (Section 3), Platzman et al.'s model resolves 5 slow (T < 24h)
gravity modes, but these tend to take on the appearance of vortical modes in the presence
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Figure 8: Volume-fluctuation vectors for Platzman et al.'s mode 12.
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Figure 9: Platzman et al.'s computed mode 15, which contains a Kelvin Wave component.
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of bottom topography. An example of a fast gravity wave is shown in figure 10, of mode
28. In this example, the arctic ocean seems to be strongly excited, and the arctic energy

density is much larger than the global average.

t 4 " I iv Ni md l

Figure 10: Platzman et al.'s computed mode 28, a gravity wave.

7 Resonance

The response of the oceans to tidal forcing at frequency w, given a spectrum of ocean normal
modes, can be written as

((x,t) = ReZ 1w)--
Wn - W - n Wn

n2

where w, is the frequency of the nth normal mode of the oceans, Sn(x) is the corresponding
eigenfunction, and B(C(w) is a complex factor that needs to be somehow determined. Qn, is
a dissipation factor; that is, the nth normal mode dissipates a fraction 27rQnj of its energy
per cycle. The response function given in equation (72) assumes that the functions Sn(x)
form a complete set. Equation (72) also makes the implicit assumption that the normal
modes are linear waves. This assumption does not really hold in shallow water, where the
nonlinear friction terms become significant. It is instructive to examine equation (72) for a

hypothetical case where one mode (say,the zeroth mode) dominates, and its corresponding
spatial response is constant, such that Bo(w)So(x) = Co. Then we can write

Aeie = Co (73)
WO - W - ½iQ-lwUo

This response function is plotted in figure 11. The age of the tide (i.e. the time lag

between the tidal potential and the maximum of the response) can be found from de/dw,
which, in this simple case, is given by

dO ½Qo1 wo
d= (0oow) 2 +(½Qo wo)2 • (74)
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For the single-mode case, the maximum value is 2Qo/wo (at w = wo). If the tide were
dominated by single ocean mode, the age of the tide would be positive, and the same
everywhere. Since

Qo Ž!1 WOdO (75)2 dw
the age of the tide would put a lower limit on the quality factor Q0.

Sample Response Function
10

8-

E4

2

0

300-

S200

0 5 10 15 20 25
Frequency

Figure 11: Sample response function for a single normal mode, where we have chosen w0  1,
Q0 = 25, and Co = 1.

8 Comments on Inferences drawn from Ocean Models

Looking at the models for the ocean's normal modes we have just discussed, we can draw
some interesting conclusions. Taking the dynamical solution of the "time scale" problem
for the lunar orbit evolution as being solved by Hansen [2], Webb [3], Ooe et al. [4], and
Kagan and Maslova [5], the models generate significantly smaller torques in the past than
that implied by earth's present rotation rate. Platzman's work explains that the ocean
has many different normal modes, some of which have frequencies close to the main tidal
spectral lines. The modes grow more complex as frequency increases. In the past, the
Earth's faster rotation forced tidal frequencies higher so that the modes with near-tidal
frequencies were less well matched spatially to the large-scale tidal forcing, so that they
were less easily excited. Therefore the torques were smaller since the tidal admittance to
the tidal potential was also decreased from its current day value.

9 Why Ocean Tides are Back in Fashion

The LTE were written down 1776, so why are we still studying tides in 2004? There are
several reasons: understanding why certain places see such large tides, understanding tidal
dissipation from internal tide mixing, and the possibility of using the tides as a renewable
energy source. We will discuss the first of these in this lecture.
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Name Type Period(h) Amp.

Q1 L 26.87 0.0641
01 L 25.82 0.3800
P1  S 24.07 0.2011
K 1  L/S 23.93 0.6392

N 2  L 12.66 0.0880
M2 L 12.42 0.3774
S 2  S 12.00 0.1089

Table 1: Dominant constituents at Victora

10 The Tides at Victoria

If the moon were perfectly aligned with the equator, its motion would only cause semi
diurnal tides. However, the moon orbits the earth at a declination angle which means that
it also forces a diurnal tide. The dominant semi diurnal and diurnal tides at Victoria, BC,

can be seen in Table 1.
The interactions of these tides account for the daily variations in the tides. M 2 and S 2

beat over the spring/neap cycle. K 1 and 01 beat over a lunar month to allow for changes
in the moon's declination which modulates the lunar diurnal tide. K 1 and P1 beat over a
year to allow for changes in the sun's declination which accounts for changes in the solar

diurnal tide. Furthermore, M 2 and N2 beat to provide a correction allowing for ellipticity
in the moon's orbit which also effects the lunar diurnal tide.

Since K 1 has the largest amplitude we expect the tides in Victoria to look mostly diurnal.
That is there should be approximately one maximum and one minimum tide during the
day with some variations due to the other tides. However, in the third week of March
2004, for example, there were several consecutive days where there are two distinct maxima
and minima. This is an example of the beating discussed in the previous paragraph. At
the spring perigee, the sun and the moon were very close to the equatorial plane which
diminishes the diurnals allowing the semidiurnals to appear more prominently, particularly
at spring tides.

11 The World's Highest Tides

Two Canadian locations have recently both claimed that they have the world's largest tides.
In the upper part of the Bay of Fundy, the tides rise up to 17m. Ungava Bay in Quebec
also has tides that can reach at least 16.8m. Both of these maxima occur in an 18.61 year

nodal cycle.
There have been several "explanations" offered by various sources for why the tides in

the Bay of Fundy are so large. These include the idea that the Bay of Fundy is the closest
point to the moon at these times and the belief that large tidal currents from the Indian

Ocean can enter the bay because it opens to the south! In actuality, these large tides are
more likely connected to a resonance phenomenon [6], which will be discussed in the next
section.
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12 Friction and Resonance

The time lag between the spring/neap cycles of the different tidal potential constituents,
and the actual observed response of the oceans, is called the age of the tide [7]. It can
be explained mathematically in terms of the response function given in (72) introduced in
Section 7. The effect of friction can be examined more closely by approximating the energy
dissipated due to friction, which is proportional to ulul. If we assume that the tidal current
u is the sum of a primary tidal constituent and a secondary, weaker one,

u = uO(cos wit + Ecosw 2 t), (76)

(where c is a small parameter) then it can be shown that

8 2 3ulul = -Uo(COSwlt + - cosw2t + ... ), (77)
37r 2

where we have neglected higher-order harmonics. The 3/2 coefficient in the second term
of (77) shows that the weaker tide feels a stronger frictional effect. In other words, the Q
factor for the weaker tide will be 2/3 that of the stronger tide.

The response of the Bay of Fundy and the Gulf of Maine implies a resonant period of
about 13.3 hours and a Q, for M2 , of about 5. On the west coast, the tidal response of
the Strait of Georgia and Puget Sound can be modeled as a Helmholtz Resonance, where
the tidal current enters a bay of surface area A through a channel of length L and cross
section E. We will assume that the bay is small enough such that the height of the water
surface rises uniformly everywhere. If the tide outside the bay is acoswt, the level inside
is Re(a'e-iwt), where a' is the response amplitude in the bay. The current in the entrance
channel is Re(ue-iwt). The continuity equation is is then

-iwa'A = Eu. (78)

The channel dynamics are a balance between acceleration, friction, and the pressure gradi-
ent. The momentum equation can be written as

-iwu + g(a' - a)/L = -Au, (79)

where A is simply a linear damping factor. As shown in equation (77), A will be 50% larger
for the constituents with weaker currents than the dominant M 2. The response in the bay
will then be given by

a
a = 2  iWA (80)

where wo = (9E)1/2 is the resonant frequency.whee 0 •AL/

The frequency dependent response curve for a Helmholtz resonator given in equation
(80). The response for a rectangular bay (not shown) can also be fitted to the data, that is,
the tidal constituent frequencies and the corresponding amplitude and phase lag measure-
ments.

For both cases, it seems that the observed tides straddle a resonant frequency wo, with
Q = wo/A. For both cases, the fit returns a Q - 2, which is low (and thus corresponds
to high friction). This seems to be consistent with the high friction required by numerical
models.
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13 Nodal Modulation

The effect of the nodal modulation of the tide (due to the variation of the moon's declination)
can be similarly written as a response curve, proportional to

acc ao(1+ E (81)1 o 2 0 + ioao

where the 1 + c factor includes the effect of the modulation of semidiurnal forcing and the
multiplier in the friction term allows for quadratic friction [8].

Away from resonance, the friction term becomes insignificant, and a cc 1 + E. Near
resonance, however, the friction term becomes important, and a oc 1 + ½e. Indeed, the
actual modulation in the Bay of Fundy is less than in other areas.

Notes by David Vener and Lisa Neef
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Lecture 5: The Spectrum of Free Waves Possible along Coasts

Myrl Hendershott

1 Introduction

In this lecture we discuss the spectrum of free waves that are possible along the straight
coast in shallow water approximation.

2 Linearized shallow water equations

The linearized shallow water equations(LSW) are

Ut - fv = -g(., (1)

Vt + fu = -g~y, (2)

(t + (uD), + (vD)y = 0. (3)

where D, 2q are depth and free surface elevations respectively.

3 Kelvin Waves

Kelvin waves require the support of a lateral boundary and it occurs in the ocean where it
can travel along coastlines.

Consider the case when u = 0 in the linearized shallow water equations with constant
depth. In this case we have that the Coriolis force in the offshore direction is balanced by
the pressure gradient towards the coast and the acceleration in the Longshore direction is
gravitational. Substituting u = 0 in equation (1) through (3) (assuming constant depth D)
gives

fv = gG, (4)

Vt = -g•, (5)

(t + Dvu = 0, (6)

eliminating ( between equation (4) through equation (6) gives

vtt = (gD)vyy. (7)

The general wave solution can be written as

V = Vl(x,y + ct) + V2 (x,y - ct), (8)
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where c2 -- gD and V1, V2 are arbitrary functions. Now note that ( satisfies

(tt, = (gD)(yy. (9)

Hence we can try c = AVl(x,y + ct) + BV2 (x,y - ct). From equation (4) or equation (5)
we get A = - H/_ , b = HV/g. Vi and 1/2 can be determined as follows. From equation
(4) we have

ax f 11, (10)

Ov f___ (11)v-- =

Solving the two equations we get

V1 = V10(0,y + ct)e-k, (12)

V2 = V20(O, y - Ct)e ?, (13)

where R = gD_/f. Since the second solution increases exponentially from the boundary
it is deemed physically unfit and so the general solution can be written as

u 0, (14)

v F(y + ct)e-', (15)

- - F(y + ct)e-, (16)
g 

(6

where F is some arbitrary function. Since we have exponential decay away from the bound-
ary the kelvin wave is said to be trapped.

4 Poincare Continuum

Let us relax the condition u = 0 and keep the equations (1) through (2). With constant f

and a flat bottom we can seek a Fourier solution,with u, v, ( taken as constant factor times
the function e(-it+ilx+iky). The system of equations (1),(2),(3) becomes

-iOa - fv = -igl(, (17)

-iav + fu = -igk(, (18)

-io( + D(ilu + ikv) = 0. (19)

Eliminating u, v from equations (17) through (19) we get the following dispersion relation,

0.2 = f 2 + gD(12 + k2 ). (20)

This implies a 2 > f 2 + gDk 2 . Hence inside the hyperbola a2 = f 2 + gDk 2 there is a contin-

uum of waves with a given frequency a and this region is called as Poincare's continuum.
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Poincare Continuum
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Wave Number k

Figure 1: Poincare continuum.

5 Reflection along a straight coast

Consider the reflection of a wave ae(-iat-ilx+ikY) at a straight coast(figure 2). Assuming

constant depth we now derive the equation for the reflected wave. At the coast we have
the condition that the horizontal velocity u = 0. The reflected wave will have the form
ae(iat~iz+iky) + ae(i~tilx+iky). Substituting in equations (1),(2) we get,

-iuu - fv = -x, (21)

-icrv + fu = -(y. (22)

Solving for u we get,

-iOugCx + fg(y (23)u U o2 - f2

Hence the boundary condition u = 0 implies that

-iag(- + fg( = 0. (24)

Using (24) we get,
-1o + i fk

b = a la + i k (25)
o-x+ if k

Hence the reflected waves can be represented as

a -o[ ixiy -lo +if fk (iat+ilx+iky)" (26)
lac + ifk .l ]

a [e(-iat+ilx+iky) + - fa -+--ilk +yj .(6

6 Waves on a beach with a sloping bottom

We now consider the spectrum of free waves possible in a beach with a sloping bottom
where the depth is given by D = ax. Let = ?-(x)e(-ict+iky) and letting u, v oc e(-iot+iky)
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ae-a +ilx+'ky (_f I+ikf)/(o I+ikf)

u=O

ae-i at -ilx+lky

Figure 2: Reflection along a straight coast.

in equations (1),(2),(3) we get

iau - fv = -gG, (27)

iav + fu = -ikg(, (28)

io-r + (uax)x + ik(vax) = 0. (29)

Eliminating u, v from equations (27),(28) and (29), we get

?Ix + ?x+ [ 2 -!f 2 - 1 L -k 21j7=O. (30)

If V.UD = 0, then we have

S+ ý - [Lk' + k2]77 = 0. (31)
x ax

By making use of the substitution x = equation (30) can be reduced to the standard
Lagurre's Differential Equation

77zz + 77Z [+ - 1 =0, (32)

where

A f 2 _ f2 (33)
2gak 2a

The solution to equation (32) can be written in terms of the eigenfunctions rq = e-z/ 2Ln (z), nf
0, 1,2,..., where Lo(z) = 1, L,(z) = 1 - 2z, L 2(z) = 1 - 2z + z2 ... are the standard Lagurre's
polynomials. The condition that the eigensolutions are finite as z -- 0, oo gives us

1
S= n+ 1 n = 0,1,2 .... (34)

Substituting for lambda from equation (33) gives us the following dispersion relation,
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fgak _ (2n + 1)gak, n =O, 1, 2 .... (35)
01

Notice that if f = 0 we have
= (2n + 1)gak. (36)

If V.UD= 0 then

2n (37)

Plot of S= a/f vs K=gak / f2

n=2

C,)

Sn=O

S• n=l
n_= 

n=2
-0. n-

1 2 3 4 5 62 7 8 9 10
K=gak /

Figure 3: Dispersion relation for waves on a beach with sloping bottom
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Figure 4: Dispersion relation for waves on a beach with sloping bottom with f=0
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7 Refraction of gravity waves over a shelf

A shelf will cause gravity waves to refract. We begin with a shelf of arbitrary topography
H(x) (see Figure 5). The local dispersion relation for gravity waves without rotation is

a2 = gH(x) [1(x) 2 + k2] , (38)

where H and 1 depend on x. Taking the derivative of a with respect to 1 and k gives the
group velocity in the x and y directions respectively:

Cg (1, k) [gH (39)

x

H(x)

kr

688

k /

/

Figure 5: Path of a reflected gravity wave over a sloping shelf.

Equation (39) shows that the group velocity vector is parallel to the wave vector, hence
the wave group moves in the direction of the wave vector. As the wave group moves, or and
k don't change, only I does. So if the topography H(x) is known, then 1 can be computed
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in each position and is seen to decrease with distance x for a constant direction slope.
Consequently, the direction of the wave vector changes with x. The angle 0 that the wave
vector makes with the horizontal can be computed using the dispersion relation as

sin 0 -= k H(x). (40)a

As H increases, so does 0, leading to the reflection pattern seen in Figure 5. The initial
angle with which the wave hits the coastline dictates how far back into the ocean it reflects
before returning to the coast again.

The solution for the free surface elevation also shows that all gravity waves are trapped
along the coastline with this topography. Using the previous results for short waves with
no Coriolis force and an arbitrary depth profile, we get the following expression for q:

r/XX + - k) r/= 0. (41)

The coefficient of 77 indicates a turning point in the solution for the free surface. While

the coefficient is positive gm-() k > 0o, a wave solution results. When the coefficient is

negative g2 k2 < 0) an Airy solution results, which decays in the positive x direction.neaiegH(x))I

When the shelf takes the form of a step (see Figure 6), some of the gravity waves will
become refractively trapped, but there will be a continuum of waves that will be reflected
back into the open ocean. Whether a wave becomes trapped or reflects back is determined
by its initial angle of entry onto the shelf.

Munk et al. (1964) investigated refractively trapped gravity waves (or edge waves) along
the California coast. Using the actual shelf topography with the assumption of a straight
coastline for Southern California, they computed the dispersion relation for the gravest edge
wave modes. Their computations matched very well with measurements.[1]

8 Refraction of topographic Rossby waves over a shelf

When a patch of fluid moves on or offshore, potential vorticity must be conserved:

D t + =0. (42)

Assuming that H >> r and neglecting the nonlinear terms, this implies that

- f°H. (43)H

If there is an initial patch of positive potential vorticity, a positive velocity is induced on
one side of the patch, while a negative velocity is induced on the other side. For a shelf
sloping in a constant direction (dH/dx > 0), Equation (43) states that the vorticity will
decrease with the negative velocity and increase with the positive velocity (Figure 7). This
propagates the positive vorticity patch in the direction of Kelvin waves.

The dispersion relation for topographic Rossby waves can be derived from analogy with
planetary Rossby waves. For planetary Rossby waves, the dispersion relation is

69



INNO Refractively trapped
gravity wave (edge
wave)

Continuum of waves
reflected from coast-shelf
based on the angle of entry
nto the shelf

Figure 6: Path of a reflected gravity wave over a step shelf.
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Figure 7: The patches of vorticity generated by an initial patch of positive vorticity.
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l2 + k2V + f/gH(

Replacing Q with foH(x)/H for topographic Rossby waves gives

0foH(x)I/H
12 +k 2 +f/gH(

Similarly to the gravity waves discussed above, the alongshore wavenumber k and the fre-
quency a do not change as the wave moves in the x direction, so 1 responds to the change
in depth, resulting in the same arcing pattern seen for gravity waves in Figure 5.

9 Wave excitation by tides

Munk et al. (1970) measured tidal pressures and currents off the coast of Southern California
and analyzed the data for the tidal components. The dispersion relations for the possible
trapped waves against a straight coast with a shelf can be computed. The observations
can be fit by superposing all the possible trapped waves of tidal frequencies. Using a plot
of the dispersion relations for the various wave types described above (see Figure 8 for a
composite illustration of the various dispersion relations), the types of waves that can be
excited by a tide is determined by selecting the tidal frequency of interest and seeing which
types of waves are possible at that frequency. For example, in Figure 8, if the frequency
of interest is fo, only the Kelvin wave would be excited. If the frequency is very low, the
Kelvin and the Rossby waves would be excited. If the frequency is higher than fo, waves
in the Poincar6 continuum would be excited in addition to certain edge wave modes and

the Kelvin wave. The model of Munk et al. (1970), based on wave excitation, reproduces
the observed tidal amplitudes of the M 2 tide, although the K 1 tide is not well modeled.
The model was successful in predicting the tidal amplitude very well over a range of model
parameters. Additionally the model was also able to predict the amphidrome of the M 2 tide
off the coast of Southern California. Comparison of their modeled values for the current
over the course of a month shows that the model agrees well with the data, but there are
large differences at some points. This is attributed to the inability of the model to resolve
baroclinic modes and their currents. [2]

Cartwright (1969) describes measurements which show strong diurnal tidal currents near
the St. Kilda islands. The tidal amplitude of the diurnal K 1 tide are much less than the
amplitude of the semi-diurnal M 2 tide, but measurements show that the currents due to
these tides are of the same order. He attributes this to excitation of a Rossby wave by the
diurnal tides.[3]

10 Waveguide modes

In an infinitely long channel in the x direction on an f plane with sides at y = 0 and
y = a with v = 0 at boundaries (Figure 9a), waves will travel and have structure along the
waveguide, similar to Kelvin waves propagating along a coast. The kinds of waves which
can propagate can be determined by solving
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Figure 8: Composite illustration of the dispersion relations for the various wave types
discussed above.

v2 f+ o2_ = 0, (46)

where D is the water depth. The boundary condition v = 0 can be entered into the governing
equations and assuming that v takes a solution form of eiot+kx+ly the following condition
at the boundary results:

crr/y + frpq = 0 (47)

at y = 0 and y = a. The solution to Equation (46) is assumed to take the form:

77 eikx (cos -7 -- + Om sin

This solution form is valid if

k2 = or 2 - f 2  (mr)2 (48)gD .a-

If k2 > 0, the waves will propagate. If k2 < 0 the waves are evanescent and will decay. The
boundary condition can be restated as

i-a " - sin "- + Ym + if k cos rn + a, sin -v= 0. (49)

a k a a]) a a7Y . (9

at y = 0, a. To satisfy the boundary conditions,

am L _-ka mr=1,2 (50)

Note that the m - 0 mode does not satisfy the boundary conditions t y = a.
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As m increases, k decreases and will become imaginary, making evanescent waves. These
waves are unimportant in the infinite channel case, but are important in the closed channel
case discussed in the next section. For the waves to propagate

f W__/ a2 /1/2 2 f2

m< (a2Df )/2  and a 2 >f 2 .

Kelvin waves are also possible and can propagate along both boundaries, but in opposite
directions. The two Kelvin waves must be superimposed to describe the behavior of 'q. This
superposition of the two waves leads to amphidromes in the channel, separated by a half
wavelength, where there is no change in qj. The wave crests rotate around these amphidromes
with a period of 2wr/a. Figure 9 shows examples of the location of the amphidromes,
depending on the magnitude of the two Kelvin waves.

y=a
K ~~V=0 5ý

\ .---amphidromic
point

K v=0
V=0

C d

025K 0

K K

Figure 9: Kelvin waves propagating in a channel. Panel (a) shows the variables, a. The
Kelvin waves are of equal magnitude. b. One Kelvin wave is twice the magnitude of the
other. c. One Kelvin wave is four times the magnitude of the other. d. The Kelvin wave
only exists in one direction resulting in cotidal lines that progress along the channel.

11 Kelvin wave reflection

In a channel with a closed end as in Figure 10, an incident Kelvin wave will be reflected
out of the channel. While v = 0 at the boundaries for these waves, u $ 0. For the
boundary condition of u = 0 to be met at the end of the channel, an infinite series of
evanescent Poincar6 waves (as discussed above) is needed so that the velocity imposed by
the Kelvin wave on the end of the channel is countered. These waves decay exponentially
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so at a sufficient distance from the end of the channel, the channel is seen as infinite and
the solution looks like that discussed above. In order to have these evanescent waves and
consequently perfect reflection of the incident Kelvin wave,

a2

_ ) <gD <

This can be achieved in two manners: (1) the waves are sub-inertial (a < f) or the channel
is sufficiently deep or narrow (D or a small, respectively). If neither of these criteria are
met, the reflection is not a simple Kelvin wave.

Figure 10 shows the solution for perfect reflection of a Kelvin wave in a flat-bottomed
perpendicular wall basin. Modes are obtained for each integral number of Kelvin wave-
lengths around the circumference of the amphidrome closest to the end of the channel.
Bottom topography and shelves make other modes possible as well. Hendershott and Sper-
anza (1971) show examples of this phenomenon. They show that when there is dissipation,
the amphidromes move toward y = a in Figure 10. In the Gulf of California, which is
shallow near the end of the gulf and hence there is large dissipation, the co-tidal lines show
only the incident wave - the reflecting wave has been damped out by the dissipation. In
the Adriatic Sea, where the shelf is still deep, the amphidrome is closer to the center of the
Sea, implying that the incident and reflected Kelvin waves are of the same amplitude.[4]

V=O Y=a
KR

Evanescent
u=O Poincare

waves

KI
v-. *O y=O

x=O

Figure 10: A series of evanescent Poincar6 waves is required for reflection of the Kelvin
wave out of the closed channel.

12 Tides in gulfs

The conventional treatment of tides in gulfs considers the solution to be the sum of an
independent tidal solution (where there is tidal forcing and the tidal amplitude at the
mouth of the gulf is zero) and a co-oscillating tidal solution (where there is no forcing and
the amplitude at the mouth is observed). Figure 11 shows schematically how this solution
is obtained. This method can work only if the tidal amplitude at the mouth of the gulf is
observed.
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Figure 11: Treatment of tides in a gulf as the sum of an independent and co-oscillating tidal
solutions.

Garrett (1975) proposes another methodology to solve this case. Figure 12 shows the
two solutions that are combined to achieve the true solution. The boundary condition is
that the normal velocity is zero at the coastlines of the gulf and the ocean. Garrett also
represents the true solution as the sum of two simpler solutions. In one of these, the zero
normal velocity boundary condition is also imposed at the mouth of the gulf. The second
solution has a normal mass flux boundary condition at the mouth that is equal to a function
F(s) to be determined, where s is the distance across the mouth:

VD ft= F(s), (51)

To determine F(s), Garrett first supposes that UID fi = 3(s-co) produces elevations (a(s) =

KG(s, a) and (o(s) = -Ko(s, a) on the gulf and ocean sides of the mouth respectively,
where 5 is the Dirac delta function. To satisfy continuity at the mouth, the sum of the two
solutions for the gulf and the ocean need to be equal:

C~s)=Cbs +J Kc(s, ci)F(u)do- = 10- J Ko (s, o) F (ax) d. (52)(() (s)+ mouth mouth

To solve this problem, first (G,(o,KG,Ko are found and then the total solution,

(G(r) = (h(r) + Imouth KG(r, a)F(a)do, (53)

can be solved to give the amplitude of the gulf tide. [5]

GULF GULF

I]G~r KG(r~c)

S
OCEAN uD'.=O OCEAN uD.Jn=5(s-K()

u.•=0U.fi=0
LTE = r LTE = 0

Figure 12: Illustration of the solutions used by Garrett (1975) for the gulf tides.

Notes by Vishwesh and Danielle
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Lecture 6: Internal tides

Myrl Hendershott and Chris Garrett

1 Introduction

So far, we have only considered barotropic tides, which have no vertical structure. In this
lecture we turn our attention to baroclinic modes, which do have vertical structure. These
are also referred to as internal tides.

Internal tides are internal waves forced by the interaction of the barotropic tides with
the bottom topography of the oceans. To understand how internal tides can be generated
in the ocean, it is useful to go through the properties of internal waves.

2 Internal waves

Internal waves in the ocean are the response of a rotating, density stratified, incompressible
fluid to small perturbations. To derive the governing equations for these waves, we begin
with the equations of motion for a fluid on a rotating Earth (see lecture 2), use the Boussi-
nesq approximation and linearize about a base state of rest given by u = 0, p = p0(z) and
p = p0(z) where u is the velocity vector, p the pressure and p the density. Incompressibility
is then

au Dv 9w (1)
Dx ay D =z

and the momentum equations become

au fv 10p (2)
at Po ax'
Dv l0p9 + fu 1 (3)+f= Po Dy '

Dw I lap p
w_ - -- 9, (4)

Dt PoOz PO

where f is the Coriolis parameter and p and p are the perturbations to the density and
pressure fields respectively. The continuity equation becomes

9P+DPO -0. (5)
Dt Dz

And, from the momentum equations, it is also possible to find the energy equation

-a -po(U2+V2 +w2) +V.(pu)=-wpgk, (6)
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where k is the unit normal in the z-direction.
From (1)-(5), the equation for internal waves may be derived

-2 [V2w] + 2
02Wat2  
az2 +N 2V2w=0, 

(7)

where N = (-gipo dpo/dz)-l/ 2 is the Brunt-Vdisih1 frequency, assumed constant for sim-
plicity in this lecture unless otherwise stated. Subscript h refers to derivatives in the hori-
zontal plane. We refer the reader to [1] for a derivation and we observe as a reminder that
we are considering the situation where the hydrostatic approximation is not valid, since
gravitational (or buoyancy) force is essential for the motion.

In the process of obtaining (7), the continuity equation (1) is used to substitute the
vertical velocity for the horizontal velocities in the horizontal momentum equations (2) and
(3). The result is an equation in w with a forcing term dependent on the horizontal variation
of pressure

a3w 9w VP(

a2t a-;, + f &0  t = PO

If the disturbance is allowed no horizontal dependence, the above equation describes a
harmonic oscillation with frequency f.

Another equation for w of second order in time can be obtained by differentiating in
time the vertical momentum equation (4) giving

02 w 1 02pt2 + N2W = _ 1a(9)
at2 Po at O z

Here a harmonic oscillation of frequency N is obtained if the perturbation has no vertical
dependence.

The wave equation (7) is obtained by eliminating pressure between these two expressions,
and the above remarks suggest that there will be two limiting cases for the motion. This
also calls our attention to the fact that (7) has the structure of a double uncoupled harmonic
oscillator. We anticipate that the frequencies of these wave motions will depend only on
their angle with respect to the x-y plane and to the vertical direction and not on their
amplitude. This 'azimuthal' angle determines how the horizontal and vertical forces at play
combine to make the restoring force, while the amplitude has no effect on the frequency of
a harmonic oscillator.

Equation (7) has an interesting spatial property, which can be better appreciated if we
eliminate the temporal dependence by substituting w = W(x, y, z)e-iwt into (7). We obtain

W,- [N 2 ] (W.X + WYY) = 0. (10)

If the term in square brackets is positive, then the vertical and horizontal derivatives have
different signs, which reflects the anisotropy in space introduced by the vertical stratifi-
cation. Furthermore the equation is hyperbolic, which allows for energy propagation. If
however the term is negative, then (10) is simply Laplace's equation, but for a scale trans-
formation, and does not allow propagation of energy. This is another way of acknowledging
the two limiting cases for the motion pointed out earlier: the equation allows for traveling
waves with frequencies between f and N.
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2.1 Internal wave solutions

We now consider solutions of (10) in an infinite fluid. The equation may be solved in
two ways. Firstly, we may solve it assuming a plane wave form of solution and hence we
substitute the trial solution

W - Whei(kx+ly+mz) (11)

into (10). This leads to the dispersion relation

- N2 (k2 + 12) + f 2m 2  (12)

Substituting the wave solution (11) into the continuity equation we get

ku =0, (13)

where k is the wave vector and u the velocity vector. That is to say, the wave vector is
perpendicular to the displacement of the particles.

To simplify calculations from now on we assume, without loss of generality, that we have
orientated the x-axis in the direction of the horizontal component of the wave vector. The
dispersion relation (12) then becomes

2 - N 2 k2 +f 2m 2  (14)k22 + M24

and from it we can calculate the group velocity c. = (Cgx, Cgz)
Ow mk

C9  5 _ [N 2 f2 ] rn2 )2-(m, -k), (15)=g - k = w(k2 +'

and we observe that k • c9 = 0. Hence the group velocity is also perpendicular to the
wave vector. Furthermore we can see that the group velocity and wave vector always have

opposite vertical components. This means that if phase propagates downwards energy
propagates upwards and vice versa.

If we suppose that x(t) = (x(t), z(t)) is the trajectory of the energy carried by the wave,

then dx/dt = c9 and so the trajectory is the curve that satisfies

dz _ cz _ k (16)

dx cgx M(

This means that the energy trajectories are curves along which the independent variables
are related by an ordinary differential equation. They are therefore also the characteristics
of the wave equation.

Equation (10) may also be solved using characteristics. The solution, in two dimensions,
is given by W(x, z) = F(x + caz) + G(x - az) where F and G are arbitrary functions and

a is the ray slope, given by
N2 - w2

a2 = N- (17)
9 f2 •
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Figure 1: Schlieren image of internal waves, generated in a stratified fluid of constant
N, by oscillation of a horizontal cylinder. Note that energy is propagating away along
characteristics and surfaces of constant phase stretch out radially from the source. From
Mowbray and Rarity [2].

If we substitute for w from the dispersion relation (14) into the expression for a2 , then we
find that it reduces to k2/"1 2 and so the result found through this procedure is equivalent
to that found in the preceding paragraph.

The unusual properties of internal waves described in this section were observed experi-
mentally by Mowbray and Rarity [2]. They placed an oscillating wave maker in a stratified
fluid and observed the wave pattern shown in figure 1.

2.2 Internal waves in a finite depth of fluid

Equation (10) can also be solved for a rigid-lid upper surface and a planar bottom. A rigid-
lid is an acceptable approximate boundary condition to use in place of a free surface, as it
may be shown that internal waves only have a small surface displacement (see, for example,
Pedlosky [1]). The solution is similar to (11), except that the vertical wavenumber is now
quantized as

W = Wheikx-iwt sin (--)nz (18)

in two dimensions, where H is the depth of the fluid.
This theory predicts the paths of propagation of energy for small perturbations in the

ocean, and we see that it depends on the depth of the ocean and on the Brunt-VWish1h
frequency. In this analysis, we have assumed that N is constant, however it can be shown
(see, for example, Pedlosky [1]) that characteristics are also the ray paths for the WKB
approximation for slowly varying N, the case for the ocean.
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2.3 Interaction of internal waves with bottom topography

A final interesting property of internal waves is the way in which they interact with a
sloping boundary. We refer the reader to Pedlosky [1] for a derivation of the reflection laws.
Here we will limit ourselves to stating the results. Frequency is preserved by reflection, but
not wavelength. If the slope of the boundary is less than that of the characteristics, the
horizontal component of the wave vector is conserved under reflection. In other words, there
is no back reflection from a boundary with slope inferior to that of the characteristics. Since
all the energy is being transmitted forward, energy density must increase as the waves reach
shallower water up the slope. If the slope goes all the way to the surface, energy density
would be expected to be infinite at the apex. However, with each reflection the vertical
wavenumber gets larger and the waves shorter. Group and phase velocities go rapidly to
zero with the depth, so the wave never reaches the apex. In practice, as wavelengths become
too small, the linearity assumption breaks and dissipative process come into play. Note also
that the closer the slope of the surface is to that of the characteristics, the more intense the
focusing effect, as can be seen in figure 2a.

7777777777777

(a) (b)

Figure 2: (a) Internal wave characteristics approaching a sloping boundary. After reflection,
the energy in the waves is concentrated into a narrower band. If the boundary has slope
equal to that of the characteristics, then all characteristics after reflection lie on the same
line. (b) A barotropic velocity profile impinging on a sloping boundary. On the boundary,
the velocity vector can only have a component tangential to it and hence over the slope,
the velocity profile is no longer barotropic.

This behaviour of internal waves in interaction with a sloping boundary was observed in
Sandstrom's [3] experiments: the amplification from a sloping bottom was clearly demon-
strated.

3 Internal waves in the oceans

It is nowadays accepted that the interaction of the barotropic tide with bottom topography
in the oceans is one source of internal waves, in this case the waves are referred to as
internal tides. One way to conceptualize this generation is to imagine that, instead of a
tidally oscillating ocean with a fixed bottom, the water of the ocean is fixed and the bottom
oscillates with tidal frequency. The oscillations of topography then behave as oscillating
wave makers, as in the experiment of Mowbray and Rarity described in §§2.1.
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However, in the past, the curious behaviour found for the solutions of (7) led to doubts
about whether it was in fact a suitable equation to describe the response of the oceans
to small perturbations. Another question of interest was whether these waves could be
generated in the ocean by the barotropic tides. It was imagined that a sloped boundary
could act as a source of internal waves, in the case of a barotropic impinging disturbance. As
illustrated in figure 2b, a barotropic disturbance cannot meet the zero normal component
requirement at the slope and remain barotropic. Its energy must go into generating internal
waves, and propagate away along characteristics. These two questions motivated a number
of numerical and observational efforts, some of which we will briefly be described below.

Figure 3 shows the result of a numerical calculation where a barotropic tide was made to
impinge on a step-like slope. No specific mode structure can be recognized in the reflected
perturbation, because a composition of many is necessary to conform to such an abrupt
boundary. However, the results clearly show that the reflected perturbation is baroclinic
and propagates along the characteristics.

Regal and Wunsch [5] attempted an observational verification of propagation of energy
along characteristics for a real slope, shown in figure 4a, with the measured profile of N
shown in figure 4b. They found that the shape of the boundary coincided with that of the
characteristics. This meant that intense focusing of energy would occur along the slope.
After bottom reflection, this energy would travel to point D on the surface. An energy
profile below point D does in fact show concentration near the surface.

Even once it was reasonably established that internal waves can be generated by the
interaction of the barotropic tides with topographic features, it remained to be clarified
whether these motions had only local influence over ocean dynamics or if they could propa-
gate away for large distances and be ubiquitous in the ocean. This question was addressed
using data of an experiment originally designed to study mesoscale circulation in the ocean.

The Mid-Ocean Dynamics Experiment (MODE) provided data that proved very useful
for the study of internal waves. The setup consisted of a two dimensional array of current,
temperature and pressure profiling moorings as shown in figure 5a. These were arranged
in three concentric circles with radii 50, 100 and 180km, situated over a smooth abyssal
plane of depth 5400km. Being 700kkm away from the nearest large topographic feature,
this array was far from any source of internal tides. If significant signals of internal waves
were detected, then they would have traveled far to get there.

The two dimensional arrangement of moorings could be used as an antenna, the differ-
ence in arrival times of a given phase surface in different moorings could be used to infer
the direction of propagation of the signal. Internal waves with M 2 and S2 frequencies were
detected coming from the general direction of the nearest major topographic feature, 700 km
away. The period and direction of incidence of these signals were strong indications that
they were in fact internal tides generated at the Blake Escarpment. Averages over the whole
data collecting period for each mooring showed very significant baroclinic contribution to
their structure in some cases, indicating that the internal waves were an important part of
the local dynamics, as shown in figure 5b.

These results showed that internal tides, once generated, could travel large distances
and have a significant influence over the dynamics of the open ocean. They also suggested
that a significant portion of the barotropic tidal energy was going into baroclinic tides, since
baroclinic and barotropic contributions seemed to have comparable amplitudes in some of
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Figure 3: Depth distribution of horizontal internal tidal currents at increasing distances

away from a step shelf (top) at two times (centre and bottom) separated by a quarter-wave

period. The profile is seen to follow the rays (arrows in bottom) away from the slope. From

Rattray et al. [4].

83



IIM SI I L b 3Q KN

": t ' \ i,.N ; ", - .-,

",\,',.. !, J2500

Fig. 4. The topography of the continenta] margin to the north of Sitv D, indicating Lhe two
falilieds•of •vm cri-tict oilhating a gtheolong tii'nen EIl slope and pasting through the mJ•Oriag.
Notice that one cbaracterhstic, mark-ed 'A is virtally tangent to the slope and ovcntially rtAwbt
the sutirac' ncar Sitc ID. Charavtristics shown as dashc. two of whihi are marked V' and 'h,

alýo lend to focus near the surfa.c (adapted from Foaotuori, 1966).

(a)

AbMITTANCL AMPLIrUDE (SEC'lj
IO• .05 io" .5 -'•

10

M (1(ADIANS/ 01 .

• ia 10 •

".'F:ig. 2. Admittanc-,umplliludq u ajd Y as a fmictim, ordepth at Si~to D. The cLunre indicates
the awag wuft'e ur root buoyancy frcquV'Cy aL thi5 loc~tion. 3110110 11W POSitloU Of tWH Ns,,l[•
cunt is arbitrary, %v Iv ch1otp, it to pas through tho bu~k or- Lte points, cjl;4Ty qhowing tbia

d. ~~ne~ay wrfaoe intensilimaion. (C'ro•s is U, doitis V.)

(b)
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the mooring averages.
Probably the main reason why the role of baroclinic tides in ocean dynamics was only

recently fully acknowledged is their small effect on surface elevation. Typically of only a
few centimetres, surface elevation due to internal tides was historically dismissed as noise
in satellite data. However the shortcomings in the attempts to infer underwater currents
from surface displacement, illustrated in figure 6 are evidence of their role.

Surprisingly it is the small effect on surface elevation that has recently made global
coverage possible in internal tide observation, because these small displacements have been
successfully observed by satellites, as shown in figure 7.

4 Mixing and internal tides

Internal tides are currently receiving renewed attention due to their role in ocean mixing. In
the absence of mixing, the temperature and salinity profiles of the ocean would be uniform,
barring a thin surface layer heated by the Sun. Cold, dense water generated at the poles
would sink and flow equatorward and upwell. Eventually, water of this property would fill
the oceans up to the depth at which solar radiation penetrates. However, the real ocean
does not have this structure, as shown in figure 8: vertical mixing prevents its realization.

Internal tides are one possible source of mixing. Two studies whose results support this
statement were carried out in the Brazil Basin and the Monterey Canyon off the coast of
California. Figure 9a shows levels of turbulent diffusivity across the Brazil Basin. Enhanced
diffusivity, and hence mixing, is seen over the rough topography compared to over the
smooth topography. This suggests the involvement of bottom topography in ocean mixing,
at least at abyssal depths. Both tidal flow, and mean or eddy flows, over topography
generate internal waves. However, in this data, a modulation of the dissipation rate over
the spring-neap cycle suggests the waves are internal tides.

Figure 9b shows levels of turbulent dissipation along a section extending off the slope
of the continental shelf. Enhanced levels are seen along the ray path of a semi-diurnal tide
beam, out to more than 4 km away from the topography. Where internal waves dissipate
and cause mixing is not really known. It is thought that non-linear wave-wave interactions
and scattering when internal waves reflect off the ocean floor cause low vertical wavenumber
modes to cascade to higher wavenumbers. At higher vertical wavenumbers, there is increased
vertical shear and eventually a shear instability, and hence mixing, results.

However, low wavenumber modes are relatively stable to wave-wave interactions. In
scattering also, much of the low modes are preserved and so low modes tend to survive
many bottom encounters. This results in a general persistence of low mode internal tides,
and they have been observed to propagate to 0(1000km) from their source, as described
in §3.

5 Conversion of energy from barotropic to internal tides

As a first step towards understanding the contribution of internal tides to ocean mixing,
research has been conducted into finding the amount of energy converted from barotropic
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Figure 8: (a) Potential temperature and (b) salinity profiles along a section of the Pacific
Ocean from approximately 700 S to 200 N. Red indicates high values and blue low. The high
salinity values at the surface are due to evaporation. From the World Ocean Circulation
Experiment.
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Figure 9: (a) A section of turbulent diffusivity across the Brazil Basin. The bottom
bathymetry is shown from a representative transect with the apex of the Mid-Atlantic
Ridge at 12' W. Fiorom Toole et al. [9]. (b) A section of turbulent dissipation rate E off the
shelf break slope in Monterey Bay, California. The solid black lines are the ray paths of
semi-diurnal tide beams. From Lien and Gregg [10].
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to baroclinic tides. As discussed in §3, the interaction of the barotropic tide with bottom
topography in the oceans results in the generation of internal tides.

Cox and Sandstrom [11] and Bell [12] developed linear' theories to model the generation
of internal tides from the barotropic tide. Rough estimates originally suggested that the
energy flux from barotropic to internal tides (contributing to energy loss in the deep oceans)
was much less than the energy dissipated in shallow seas, as shown in figure 10. However,
even if only 10% of the total energy loss of the barotropic tides took place in the deep
oceans, it would contribute significantly to abyssal mixing.

(1)Hudson Bay . .

(2)European Shelf ..
(3)NW Australian Shelf

(4)Yellow Sea

(5)Patagonlan Shelf ..
(6)NE Brazil

(7)Indonesia 4
(8)N. Sea/Arctic . . .

(S)Andaman Sea ..
(10)St. Lawrence/Fundy *

(11)E Austr/N Guinea I..
(12)China Sea 0 H4 0

(13)Bering Sea o
(14)Okhotsk Sea 9

b

(A)Mid-Atlantlc Ridge

(B)MlcronealatMelanesla O1
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Figure 10: Area-integrated dissipation for various shallow seas and deep-ocean areas. From
Egbert and Ray [13]

Egbert and Ray [13, 14] examined least-squares fits of Topex-Poseidon altimetry data
to models for the global barotropic tide. They interpreted model residuals in terms of 'tidal
dissipation' with this referring to any mechanism that transfers energy out of the barotropic
tides: they were not able to distinguish whether barotropic energy is lost to baroclinic modes
or to bottom friction. Figure 11 shows the regions of significant 'tidal dissipation'.

About 0.7 TW of power is lost from M2 barotropic tides in the deep ocean. The fraction

of this associated with frictional dissipation can be estimated from the drag force pcDIumu
where CD = 0.0025 is the drag coefficient. For typical open ocean tidal speeds of u -
0.03 ms- 1 , the frictional dissipation is less than 0.1 mWm- 2 , or less than 30 GW globally.
Thus nearly all barotropic tidal loss in the deep ocean must occur as internal tide generation.

One possible location for significant internal tide generation is at continental slopes. In
some places, such as the north-western Australian shelf and the Bay of Biscay, generation

'Linear will be defined more precisely in §§5.1. Essentially, it assumes that the heights and slopes of
topographic features are small.
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Figure 11: Global distribution of barotropic energy loss. The estimates were made using ob-
servations of sea surface elevation from the Topex-Poseidon altimeter. Positive values (red)
show energy loss. Negative values (blue) indicate regions where noise prevented accurate
estimates. From Egbert and Ray [14].

at the continental shelf is significant because the tidal flow is perpendicular to the shelf, as
in figure 12a. However, in many places tidal flow is parallel to the coast, as in figure 12b
and hence internal tide generation is small. For a few decades, this area was the main focus
of research into internal tides.

wtcoat
slope Slope

tidal flow tidal flow

shelf ab yssal plain shelf abyssal plain

(a) (b)

Figure 12: The approximate flow of the barotropic tide close across the continental shelf.
(a) Flow perpendicular to the slope and (b) flow parallel to the slope.

The other main possibility for significant internal tide generation is at mid-ocean ridges
and ocean island chains such as the Hawaiian Ridge. Recently, research has focused on this
aspect of internal tide generation. Following this work, we calculate the energy conversion
between the barotropic tide and the internal tides for different topographies. For this, we
consider two approaches: linear theory for small slope, small height topography and a full
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theory for infinitely steep topography. In both approaches, the Brunt-Vhishlh frequency is

assumed constant and we restrict ourselves to two-dimensional problems.

5.1 Linear theory for energy conversion

Consider a barotropic tide U0 cos wt, where w is an astronomically determined forcing fre-

quency (for example the frequency of the M 2 or S2 tide), over rough topography as shown

in figure 13.

ocean surfAce

UO cos wt

=• H + h•::

0", _z = -H

Figure 13: A barotropic tide U0 cos wt across a rough bottom z -H + h(x) where h(x) is

a bottom topography relative to a deep constant depth level z = -H.

We first look at the three key dimensionless parameters of the problem.

tidal excursion = uLk where k is a wavenumber associated with the horizon-
horizontal scale of topography -W

tal scale of the topography;
maximum bottom slope with E < 1 referred to as subcritical as the rays have steeper

* 6 slope of characteristics

slope than the bottom topography, e = 1 is critical and c > 1 is supercritical;
* • = maximum topographic height

ocean depth = --- • where h0 is an amplitude associated with the bottom
topography and H is the depth of the ocean.

In addition there are two dimensionless numbers w/f and w/N which specify the time-scale

of the tide relative to the inertial and buoyancy time scales.

5.1.1 Assumptions

Firstly, it is assumed that the tidal excursion is much smaller than the horizontal scale of

the bottom topography. If this were not the case, then the topography would essentially

see a nearly constant current across it, although switching direction over the tidal cycle.
Quasi-steady lee waves would then form on the downstream side of the topography. For

M 2 , and with deep ocean currents of the order 10-2 ms- 1 , the tidal excursion is of the order
of 100 m and so Uok/w is indeed small.

Secondly, the linear theory requires that E and 6 are also small. Note that as the
wavenumber k associated with the bottom topography gets higher, E increases since the

characteristic slope, a from (17) is fixed by fixing w but the slope of the topography is

proportional to k. Hence, for sufficiently high wavenumbers, the linear theory will always

get into trouble. From observations by St. Laurent and Garrett [15], over 90% of the energy
flux is accounted for in wavenumbers below critical at mid-ocean ridges.
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5.1.2 Energy flux

At the bottom, the boundary condition of zero normal flow, in linearized form, becomes

dh
W z-=-H = U0ddx '

where w is the vertical component of the baroclinic wave response, and so w cx k. From
the dispersion relation for internal waves (14), it can be seen that the vertical component
of the group velocity for a rigid-lid solution (18) is

Cgz = - (N= -- k-1,
,9(nwr/H) W2 (N 2 

- f)

and so c., cx k-1 since w is a fixed forcing frequency.
Hence the kinetic energy is proportional to k2 and the vertical energy flux to internal

tides has the form

Ffinear Ocx c 9 z X w 2 ox k x bottom topography spectrum,

where the subscript 'linear' implies we are considering the linear regime. We can use Fourier

decomposition and superposition to obtain solutions for arbitrary topography.
Llewellyn Smith and Young [16] showed that the horizontal energy flux away from the

topography is in fact
00

Flinear = FOa7rH-3 E knh(k,)h*(k,), (19)
n=1

where the Fourier transform is defined as

h(kn) = j h(x)e-ikxdx,

and the modes are given by kn = awn/H, from (14), where a is the ray slope given in (17)
and

F0 = -pow v/(N 2 - _2 )(w 2  f 2)U2H

We now consider two different forms for the topography and calculate the associated energy
fluxes.

5.1.3 A small, subcritical ridge

Assume a bottom topography given by a Witch of Agnesi curve2

h(x) = ho 1 + 2)1

as shown in figure 14a. Here b parameterizes the width of the topography.
2Originally this curve was given the Latin name versoria which means 'rope that turns a sail' from the

construction resulting in this curve. This became the Italian la versiera, but on translation into English, of
a textbook by Maria Agnesi, it was mistaken for 1'aversiera, or 'witch'.
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Figure 14: The profiles for (a) a small, subcritical ridge and (b) a small, subcritical step.

Provided that <« 1 and the maximum slope of the Witch, (3 3/ 2 /8)(ho/b), is sufficiently

small so that E << 1, the problem is linear. The Fourier transform of the Witch is h(k)

bhowre-kb and hence

Flinear = F0 T62 Znc 2 e-nc,
n=1

where c = (33/ 2 r/4)(6/c) and c = a-'(3 3/ 2 /8)(ho/b). Hence we have an expression for the

energy loss to internal tides.
One further question which may be asked is how strongly the result depends on the

width of the topographic feature. In the small 6/1 limit Flinear '-, F07r2
6

2 /4, hence in the

deep ocean the flux is independent of the ridge width.

This type of profile is appropriate for mid-ocean ridges which have subcritical slopes

and are relatively small compared with the overall depth of the ocean.

5.1.4 A small, subcritical step

The bottom topography is given by

h(x) = 7r- 1h 0tan- 1 xb1

as shown in figure 14b. It should be noted that the derivative is proportional to the Witch

profile and, using this fact and integration by parts, the Fourier transform becomes h(k) =

-ihok-le-kb. The flux is now

00

Fiinear = F0 6 2 Y. n-1 e-2nb/,
n=1

where E = ho/(b~ra).

For small 6/c, we obtain
Fiinear _' F06 2 log(c/25). (20)

Hence, unlike the ridge in §§5.1.3, the flux remains dependent on the width of the sloping

region, even in a deep ocean.
It should be noted, that it is not possible to approximate arbitrary topography by a

series of independent steps, as was done by Sjhberg and Stigebrandt [17]. The flux at each
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step, if isolated and independent, is proportional to 62 log 3 as this will be shown later to
apply even for an abrupt step. If there are n steps, then 3 oc ho/n and the total energy flux
is Flinear Cx n X h n7- 2 log n, which tends to 0 as n tends to infinity.

5.2 Energy conversion at supercritical topography

For supercritical topography, c > 1 and the linear theory of the previous section is no longer
valid. In this case, it is possible to use a Fourier series decomposition and matching to study
some limiting cases: a knife-edge ridge and a Heaviside step.

5.2.1 A knife-edge ridge

The topography in this case is assumed to consist of a knife-edge of height h0 , as shown in
figure 15a.

oc('4111 i'o surlface ac.>

~OS Wos otUn (5(s WI z =- II - IO hE(.(
co ýf f -11 O h

- -i -/I

(a) (b)

Figure 15: The profiles for (a) a knife-edge ridge and (b) a Heaviside step.

Note that the ratio of the tidal excursion to the horizontal scale of the topography will
now necessarily be infinite, and quasi-steady lee waves should be expected. However we
ignore these as the same analysis with a top-hat ridge gives very similar results (see St.
Laurent et al. [18]).

The barotropic tidal current is given by Uo cos wt, perpendicular to the ridge. When
incident on the knife-edge, it produces waves propagating to the left and to the right, at the
same frequency as the barotropic tide. The form for the velocities in the reflected baroclinic

modes are taken as

00 
00

u, = Uo E a, cos (nfrz) cos(knx + wt), w, = c -, -ansin (ngz) sin(knx + wt) (21)
n=1 n=1

to the left of the knife and

00 00

u 2 = U0 Ebncos (--z) cos(-knx + wt), W2 = -CUo b, sin (--) sin(-knx + wt)
n=1 n=1

(22)
to the right, where ce is the characteristic slope from (17). The form for wi is assumed from
(18) and the form for ui follows from continuity equation (1). The form for the pressures
may be derived using (21) and (22) and the linearized momentum equations (2) and (4)
with f = 0.
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There are matching conditions at x = 0 given by

w1 = w 2 , - H+ ho < z < 0, (23)

ui + UO = u2 + UO, - H+ ho < z < 0, (24)

Ul + U0 = 0, - H < z < -H + ho, (25)

u2 + UO = 0, - H < z < -H + ho. (26)

The latter three conditions combine to give

00 00

a nos - n Cos ,nz -H <z <0,
an COS(--H-- =Hnosnc

n=1 n=1

which implies, from orthogonality of cosines, that an = bn.

The remaining conditions then become

0o

Sansin -nz) = 0, -H + ho < z < 0,
n=1

from (23) and

an cos (-- z) = -1, -H <z<-H +-h o ,
n=1

from (25) or (26).
Multiplying by cos(mirz/H) and integrating vertically gives

0 ( H+ho (fnrcos ( mz7rZ dz + sin (H ) cos (HZ) dz

n COS- H) C-gH+ho nzH H'w

- cos mz dz.

Curtailing the summation at M and taking m = 0, 1, 2,..., M - 1 gives a matrix equation
to solve for a, of the form Amnan = Cm which may be solved numerically.

The flux of energy into the baroclinic modes may now be calculated. The conversion

rate is equal to the energy flux away from the topography. From (6), this may be written
as

Fknife = J < pu > dz,

where < > is the average in time. Hence Fknife = F0 E I na2This flux is appropriate for
calculating the flux from ocean island chains, such as Hawaii, since slopes at such features
are supercritical.

The linear theory for a Witch profile gives a flux that is half that of a knife-edge in the
deep ocean case, as shown in figure 16a (see St. Laurent et al. [18] and Llewellyn Smith
and Young [19]). Various authors (see, for example, Balmforth et al. [20] and PNtr4lis et al.

[21]) have also considered the energy flux for other topographies and different values of the

slope parameter E. They find results that do not differ significantly when taking different
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Figure 16: The energy flux ratio for (a) the knife compared to the Witch and (b) the steep
step compared to the inverse tan with e = 1 against J. From St. Laurent et al. [18].

values of c. The importance of this is that, in the deep ocean case, the slope (and hence the

precise shape) of the topography is not the significant factor: the depth of the topography
is the more important parameter.

It is also possible to use a similar technique to that given above to consider flow over a

top hat ridge. Figure 17a shows the horizontal velocity profile for a steep step, similar to

that, for a top hat, ridge, and figure 17b compares the energy flux from the top hat ridge to
that from the knife edge.

5.2.2 A steep step

This is the extension of §§5.1.4 to an infinitely steep slope and is shown in figure 15b. We use
the same procedure as in the previous subsection, however some modifications are required.
The lack of symmetry across x = 0 implies that the wavenumbers to the left and right are
not the same, and also an € bn. Hence we set

Ul = UO E a, cos (--7-z) cos(knx'+wt), Wi =Uo ao aE sin (--)sin(knx +wt) (27)
n=1 n=1

on the deep side and

00

U2 o = H0z- cos ( z ) cos(-k'nx + wt),
n=1

W2 = -aUOz b s sin(-kx + Lwt) (28)nW2 bnsinkH- Jn=1 H - ho n 28

on the shallow side.
The boundary conditions are similar to (23)-(26). Noting that the barotropic tide, by

continuity, must scale by H/(H - ho) to the right of the step, the boundary conditions
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Figure 17: (a) The baroclinic horizontal velocity profile resulting from a barotropic tide

impinging on a steep step profile (the black rectangle). This profile is very similar to part

of the profile seen for a top hat ridge. (b) Comparison between the energy flux of a top hat

ridge with that of a knife edge. The fact that the curves become identical at QWL/H = 7r,

where L is the width of the ridge, is because the characteristic manages to fit into the ridge

perfectly at this length. The worse agreement as 3 become small is because the topography

profile begins to look increasingly like two separate steps. From St. Laurent et al. [18].

become

00 00 nr

Eansin(n])z 7  in (_z ) -H+ho<z<O, (29)
n=1 n---1 H-h

00 nFz) H 00 nr
I+HanChO±- S Ybn COS (V.-h) -H+ho:5z•O, (30)CooobnO--n=Il (nc s\ H H - ho n=l1H ho] , 0 < , ( 0

l+E-anCOS \ H ] = 0, -- H < z < -H + h 0 .

n=1
(31)

Multiplying (30) and (31) by cos(nwz/H) and (29) by sin[n~rz/(H - ho)] and integrating

the equations vertically gives a matrix equation to solve for an and bn of the form

am = Amnbn + Cm, bn = Bnjaj,

which may be solved numerically. Again, the flux may be found, and comparing it to the

flux from the slope profile in §§5.1.4, we see, as for the ridge/knife edge comparison, that

the difference is relatively small between supercritical and critical slope topography (see

figure 16b).
Overall the conclusion is that, in the deep ocean, increasing the steepness of topographic

features beyond the critical slope of the internal tide rays does not lead to a dramatic

increase in energy flux into internal tides. However, increasing the height of the features,

relative to the ocean depth, leads to a greater than quadratic increase in flux.
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6 Open questions

There are many possible directions for research in internal tides:

1. Theoretical and numerical models for three-dimensional obstacle of finite slope and
height.

2. The fate of low mode internal tides generated at bottom topography. Do they

(a) Break down in the ocean interior?

(b) Cascade to higher modes and turbulence on re-encounter with the sea floor?

(c) Break as 'internal surf' on distant continental slopes?

3. Develop mixing parameterizations for use in ocean models.

4. Paleo-tides.

Notes by Josefina Arraut and Anja Slim.
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Lecture 7: Tidal Bores

Chris Garrett

1 Introduction

In this lecture we discuss the formation of tidal bores in rivers. We discuss the effect of
nonlinear terms in the shallow water equations. The convergence speed is obtained for tidal
waves. This can be used to estimate the run length before a bore is formed. In §2 the
nonlinear shallow water equations are discussed. We discuss a method of solution of the
nonlinear shallow water equations in §3. A convergence speed is obtained in §4 and finally
in §5 we discuss the Korteweg-de Vries Equation.

2 Nonlinear shallow water equations

The shallow water equations with nonlinear terms can be written as,

Ut + UU, + g(x 0, (1)
,9[(h + ()u] _0. (2)

The effect of nonlinear term can be better understood using the following model equation,

Ut + (u + c)uX = 0, (3)

where c is constant. To obtain solution of (3) we can write, u = Eul + c 2 U2. In the lowest
order of E we just obtain the simple wave equation,

Ult + cuIX = 0. (4)

The solution of (4) is given as,
u1 = F(x - ct). (5)

If we consider equation at 0(c 2) then we get,

U2t + CU2x - -UlUlx. (6)

Consider an initial wave of sinusoidal form such that ul = a sin(k(x - ct)). By substitution
of ul in (6) we get, "12

U2t + c U2x = -a2 ksin(2k(x - ct)), (7)
2
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with initial condition u 2 = 0 at t 0. By solving (7) we get,

U2 1 ka2tsin(2k(x - ct)). (8)
2

When we are solving for u2 in (7), this is a system of natural frequency c and is forced with
a forcing frequency c. The value of u2 is such that it increases linearly with time. This is
counter intuitive because u2 is O(E2 ) term and ul is O(E) term, so ul should dominate over
U2, but this clearly cannot persist for long time.

An alternate interpretation of (3) can be in terms of its characteristics. The character-
istic curves of (3) are given by the solutions of the ODEs,

dx u+c (9)
dt
dud 0. (10)
dt

That is, u is constant along each characteristic, which is the straight line,

x = xo + (u + c)t, (11)

where x0 is a constant labeling the various curves (by initial position). At t = 0, u =

a sin(kxo). Since this is a property of each characteristic, the solution is given implicitly by,

u = asin[k(x - ut - ct)]. (12)

Solution (12) can be verified by substitution in (3). Evidently, the larger the amplitude,
the faster the disturbance propagates with the result that the crests of the sinusoid travel
faster than the troughs, which inexorably steepens the forward facing slopes. Eventually
the crests catch the troughs and (12) predicts a multi-valued solution, which is unphysical.
Instead, one must impose additional physics (such as dissipation) to regularize the problem,
the outcome of which is typically the prediction of the formation of a shock.

3 Characteristics of the nonlinear shallow water equations

The nonlinear shallow water equations (1)-(2) can be rewritten taking c2 = g(h +) so that

ut + uuX + - = 0, (13)

9c2  a(c 2 u)-- + 0x - . (14)
19t 09X

By adding and subtracting (13) and (14) we get,

D(u + 2c) + c (u + 2 c)
at + (U+ ) -9X 0, (15)

ot Dx

D(u - 2c) +(u - 2c)at + (U ) '9-0. (16)
101 x
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Figure 1: Steepening of tides causes formation of bores upstream in rivers. The distance
upstream where bore forms can be calculated from the convergence speed.

The quantities J+ = u + 2c and J_ = u - 2c are "Riemann invariants", each of which is
constant along a particular characteristic curve on the (x,t) plane. J+ is constant along the
curves C+ defined by,

dx --=u + c. (17)
dt

Similarly, J_ is constant along the curves C_ defined by,

dx
dt u-c. (18)

We can solve (13) and (14) by moving the Riemann invariants along the curves defined by
C+ and C_. For most initial conditions, this procedure furnishes a simple numerical scheme.
However, there are also special examples (such as the classic dam-breaking problem) that
can be dealt with analytically.

4 Convergence Speed

We start by assuming that J_ = B (constant everywhere) and J+ is constant along the
curves of C+. For the rear and front of the wave we can write (see figure 1)

ul - 2c, = B, (19)

-2co = B. (20)

From the equations above we can then write

u1 = 2(cl - Co). (21)

The rear of the tidal wave travels at speed ul + cl and the front travels at speed co. So the
convergence speed Uconverg is,

Uconverg = 3(c, - co). (22)

The steepening of the tidal wave occurs due to difference in velocity u and difference in
heights c. Only one-third of the convergence speed is due to the difference in heights, the
rest is due to the difference in velocity.
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5 Korteweg-de Vries Equation

The Korteweg-de Vries equation can be found useful in a wide variety of wave problems
in many diverse fields. In the ocean it can be found as a nonlinear representation of the
shallow water equations. Thus, it can be used to model tidal waves. Its dimensional form
is given as,

+ 3 U 0u 1 o2 3 u (23)

The 3/2 fraction in the non-linear term is to obtain a correct amount of steepening of the
waves (based on the discussion in §4, one third of the steepening is due to convergence speed
and the other two thirds is due to the difference in heights) and co is the wave speed in
shallow water. The last term in (23) is to make the equation consistent with the dispersion
relation of the linear gravity waves given by,

W2 = gktanh(kh) P cok(1 - 1k2h2) (24)
6

The linearized shallow water approximation is useful only if the following two ratios are
small:

kh < 1, (25)

Because of the severity of the the second restriction nonlinear theory of shallow water waves
is needed. In order to derive this equation we first need to derive a low order Boussinesq-
type equation. Since the velocity potential is analytic, we may expand it as a power series
in the vertical coordinate. By substituting this series into the Laplace equation and by
using the impermeable kinematic horizontal bottom boundary condition we can derive low
order nonlinear shallow water equations [1].

Ott - =xx -=-3xxtt ej 2 t±- (26)

Now let us assume a propagating wave in the positive x direction with a nondimensional
wave speed of one and with a slow time variation: C = x - t, T- = Et. In terms of these
variables, the derivatives become

a (27)

By substituting these into the low order Boussinesq equation we get a nondimensional KDV
equation in non-stationary coordinates

U+3 ±UUO + P Q(eP 2 ). (28)

Notes by Vineet K. Birman and Yaron Toledo.
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Lecture 8: Tidal Rectification and Stokes Drift

Chris Garrett

1 Introduction

In this lecture, we examine how tidal flow which may be thought to be purely oscillatory
can affect the mean flow. In §2 we examine flow separation and in §3 we look at the residual
flow over a promontory. In §4 we describe Lagrangian vs. Eulerian motion. We see two
arguments for how a clockwise mean flow around George's bank is generated by the tides.

2 Flow Separation

First consider the flow over a curved body (see Figure 1). Outside the boundary layer be-
tween points A and B, the body causes the streamlines to converge, resulting in acceleration
of the outside flow, while the flow decelerates between B and C. Using Bernoulli's law, it
can be shown that the accelerating region, the pressure decreases and in the decelerating
region, the pressure increases. At the wall, the boundary layer equation is

Dy2 = x (1)

Thus where the pressure gradient is negative (a "favorable" gradient), 0 2u/Oy2 is also neg-
ative, leading to profile A. When the pressure gradient is positive (an "adverse" gradient),
02u/0y 2 is positive, leading to profile C. Using continuity, it is seen that the boundary layer
grows in the the decelerating zone. The adverse gradient causes deceleration of the region
immediately next to the body, as seen in the difference between profiles B and C. If the
pressure gradient is sufficiently adverse, the flow can actually reverse at the body as seen
in profile D. Where the reverse flow meets the forward flow, the flow will separate from the
wall. Turbulent boundary layers are able to withstand the adverse pressure gradient better
than a laminar boundary layer because the velocity profile above the body is more uniform
and similar to the external flow than in the laminar case. Because of this, the separation
point occurs farther along the body and consequently there is a thinner wake, which reduces
the drag on the body. [1]

Flow separation can lead to tidal rectification. The next section discusses tidal flow
around a promontory and the conditions for separation of tidal flow in the presence of
friction.
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Figure 1: Flow past a curved body. The velocity profiles at various points along the body
are shown along with the regions of adverse and favorable pressure gradients.

3 Residual circulation at a promontory

Strong tidal currents flow past the Gay Head promontory [2]. Measurements of the currents
near the promontory show that there is a net flow away from the promontory. Figure 2 shows
a schematic illustration of how this flow is created. When the tide flows past the promontory
in one direction, the flow separates, creating an eddy. Then the tide reverses and does the
same on the other side of the promontory. The combination of the induced currents creates
a residual flow away from the promontory. Geyer and Signell (1990) measured this residual
flow and found its average magnitude to be approximately 10% of the tidal flow magnitude.
This phenomenon is discussed in the context of flow separation next.

Figure 2: A residual current can be created by tidal flow around a promontory.

Outside the boundary layer next to the promontory, the following governing equation is
valid:

OU Ou CdU 1U1 (2)
at + X ax h (

with x following the shape of the promontory. This flow is similar to that described in
the previous section, although now friction is present. This has the effect of changing the

direct relationship between the pressure gradient and acceleration or deceleration of the
flow. Now, even for steady flow, the pressure gradient is balancing both the advective
term and the friction term. While in the simple example the pressure gradient directly
determined acceleration or deceleration, now the pressure gradient will continue to drive
the flow in order to work against the friction. In this case, the flow will remain attached to
the promontory and not separate if

CDU 2  Ou

H Ox
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where, U, H are the current speed and depth outside a narrow region, near the coast, over
which the depth increases from 0 to H.

Consider the case of a small promontory (see Figure 3). Flow separation depends on if
the pressure gradient is balancing the advective term or the friction term. If the advective
term is larger than the friction term then flow separation will occur. The above condition
for no separation can be scaled as

CDU2  UAU bU 2

H a a2

This condition can be restated as
a2  H

b > C-D"

Geometry gives
a 2 + (R- b) 2 = R 2 . (4)

For the small promontory, b << a so (4) can be rewritten as

a2

- 2R. (5)
b

(3) now reduces to

R> H (6)> CD

for the condition of no separation. For example, using typical values of H = 20 m and
CD = 2.5 x 10-3, R nmst be greater than 4 km to avoid flow separation. Separation is
easier if b > a, or the promontory is much longer than it is wide.

For a given geometry there are controlling factors that dictate if the flow will separate:

b H U
a' Ref- CDa' K,= wa'

where Ref is a friction Reynolds number, K, is the Keulegan-Carpenter number, and w is
the tidal frequency. The ratio of the friction Reynolds number and the Keulegan-Carpenter
number is

Ref - Hw spindown time

Kc_ CDU period/27r (7)

Tidal rectification occurs if the flow separates. The above analysis must be expanded for
the more realistic situation of a varying depth H and 3D land forms to better evaluate
where tidal rectification may occur.

4 Lagrangian Motion

There are two basic ways to describe a fluid flow. The Eulerian method, which is often a
more natural description for observationalists, describes the flow of a fluid at certain fixed
points. Velocity is measured as the flow past a particular point in space and time. The
Lagrangian method refers to the flow following a fluid particle. Velocity is measured at
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Figure 3: Flow past a small promontory. The promontory causes an increase in the velocity,
AU as described in Section 2. For the analysis in the text to be valid, b < a.

the fluid particle, wherever it is in space and time. Using the subscripts E and L to mean
Eulerian and Lagrangian, we have the following relationship between these two velocities
for a particular particle at time t which started at position x0 ,

UL(XO, t) = UE (x0 + j UL(xo, t')dt', ). (8)

Note that the expression x 0 + fo UL(Xo, t')dt' is simply the position x of the Lagrangian
particle at time t.

If we take the average of these velocities in time and expand for small intervals in space,
we arrive at the following relationship,

(UL(xO, t)) (UE (xo, t)) + K ' UL(XO,t')dt'. VuE(xO, t) +... (9)

(UE(XO, t)) + J UE(XO, t')dt' VUE(XO,t) , (10)

where (.) is the mean. Assuming UL : UE, UL in (9) can be replaced by equation UE in (10).
Dropping higher order terms, we have that the difference between the mean Lagrangian and

Eulerian flow is the third term in (10), which is called Stokes drift.
The Stokes drift is like surfing. The more you stay with a wave, the more you drift

forward; that is, you stay longer with the forward flow than if were standing still (Eulerian)
in which case you would see the forward and backward flow for exactly the same amount of

time. This forward drift is Stokes drift.

An interesting observation.

If we consider a plane wave, UE = uo cos(kx - wt) then the Stokes drift becomes

tu 2  1 U2
UE (X0, t') dt'" VUE = - sin 2(kx - wt)) - 0

107 2 c

107



where c = w/k is the wave speed. In the non-rotating case, energy is equipartitioned

between kinetic and potential energy. In this case,

K t'UE(X,t))dtfVuE = 2 c c

where E is energy. For tides, c can be quite large which means that the Stokes drift will be
very small.

4.1 Example on a Slope: Georges Bank

If we consider a long wavelength tide approaching a bit of topography like Georges Bank

in the Gulf of Maine, we can see the relationship between the Lagrangian and Eulerian
flows, and the Stokes drift. In this argument, we consider the scale of the topography to

be much smaller than the wavelength of the tide so that the wave is in phase all along
the bank. Here we are considering an underwater sloping topography rather than a beach
since at a beach the waves steepen and break, which are not the dynamics we're interested

in. Lastly, the tidal flow makes ellipses due to the oscillation and the Coriolis force. As
the wave encounters a sloping bottom, in order to conserve mass the tidal excursion in the
horizontal must increase, thereby creating larger tidal ellipses in the shallow water on top
of the bank.

4.1.1 Hand-Waving Argument

Kinematic argument. Using a kinematic argument, we can see that a particle which is
advected towards the shallow water by the tide will see a larger tidal ellipse in shallow
water, causing it to drift further to the bottom of the figure than it drifts back in
the smaller tidal ellipse in deep water. See Figure 4. Thus, the Stokes drift is to the
bottom of the figure (counter-clockwise around Georges Bank).

Deep Sallo

Figure 4: Kinematic argument: Stokes drift of a particle. This figure is a planar view of
the underwater topography which is deep on the west and shallow in the east. The parallel
vertical lines indicate bottom contours, and the closed ellipses are the tidal ellipses of the
M 2 tide in deep and shallow water, with a gradient in size of the ellipse between. The
curly line over the sloped topography is the path of a particle starting in the deep seas and
experiencing the tidal ellipses as it moves to the east.

Dynamic consideration. From earlier considerations of drag, we know that it scales as
Cdu2 /h, where Cd is the drag coefficient, u is velocity and h is depth. This means
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that in shallow water, a particle would experience more drag per unit time than in
deep water. If we assert that a particle must experience no net force and no net
acceleration over a tidal cycle, then the particle must spend less time moving south
in shallow water in shallow water than it does in deep water. See Figure 5. Thus
Lagrangian flow must be to the north (clockwise around Georges Bank).

Deep Shallow

Figure 5: Dynamic consideration: Lagrangian flow of a particle in a tidal cycle. The tidal
ellipses and topography are the same as in Figure 4, but the path of a particle using dynamic
arguments is to the north rather than the south.

Eulerian flow. Since Lagrangian = Eulerian + Stokes, the Eulerian flow must be even
stronger to the north (clockwise around Georges Bank) than the Lagrangian flow.
Clockwise flow is indeed observed in the mean around Georges Bank.

FA hleriian

Stokes

Figure 6: Eulerian flow around Georges Bank as the difference between Lagrangian flow
and Stoke's drift.

4.1.2 Momentum Argument

This section will describe the tidal rectification around Georges Bank through continuity,
Coriolis forces (changing the size of tidal ellipses) and bottom friction. If we consider the
momentum equations of a tide encountering a bank averaged over a tidal period, we can
solve for the resultant mean flow along the bank. Using 1 subscript to indicate tidal flow,
the equations to solve are

ulal f (v) +g 0O , (11)

K V k _ (kv)
ulOx / H ' (12)

where k = Cd(u 2 + v2 ) 1 / 2 is the frictional drag term at the bottom. We have assumed no
mean across bank flow ((u) z 0) and no pressure gradients along the bank (OC/Oy = 0).
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Solving (12) gives the alongshore current for a given tide, then using v from the solution,
(11) gives the across bank pressure gradient. Numerical solutions by Loder using deep
and shallow water tidal ellipses and Georges Bank topography confirm the mean clockwise
Eulerian flow [3]. He finds that for a tide of frequency w with velocities ul, v, the solutions
have frequencies w, 2w and higher harmonics as well as the steady, rectified flow.

5 Conclusion

In this lecture we have seen how flow which is considered to be purely oscillatory from an
Eulerian point of view can create a mean flow, either through interaction with topography
or through Stokes drift. The argument for how Stokes drift results from the difference
between Eulerian and Lagrangian velocity will be concluded in tomorrow's lecture with a
vorticity description.

Notes by Danielle Wain and Eleanor Williams Frajka
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Lecture 9: Tidal Rectification, Stratification and Mixing

Chris Garrett

1 Additional Notes on Tidal Rectification

This lecture continues the discussion of long-wavelength tidal flow over comparatively short
topography such as George's Bank. The mean flow around the bank can also be understood
via the following vorticity argument.

First, consider the vertical component of the fluid's relative vorticity,

Dv Du(1

Sis defined as positive for counterclockwise flow, and negative for clockwise flow. Here,
with water depth H(x) and constant f, the evolution of the vorticity is given by

O• ý uf dH
-t . H 2 dx

since the potential vorticity of the fluid is conserved following the flow:

D t H+( • =0 (3)

We can see that changes in either the Coriolis parameter or the water depth will induce
changes in the vorticity. If a fluid parcel is displaced north, its ambient vorticity increases
(dfldy > 0), and it compensates by developing a negative relative vorticity, such that (3)
is satisfied. Similarly, if a parcel moves into shallower water (dH/dx < 0) the relative
vorticity has to decrease in order for potential vorticity to be conserved. Because of the
analogy between planetary and topographical vorticity gradients, we can understand the
mean flow due to a tidal current across the slope using the same argument that is made to
explain the propagation of planetary Rossby waves.

For this analysis, we will neglect the nonlinear advective term in (2), and additionally
assume that the rate of change of vorticity is a function of not just the Coriolis/depth term
in (2), but that also of bottom drag. Defining A as a friction parameter, we therefore model
the rate of change of vorticity as

-= 3u- A, (4)
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where - . If we plug in plane wave solutions

=oe-i`t, u = uoe-iwt,

then

-iwý = -/3u- A6
-f3u (5)A -

Equation (5) helps us to interpret what happens to vorticity if there is both friction and a
change of depth. In particular:

"* If A = 0, then the vorticity lags the current by a phase 900.

"• If A > w then ý oc -u, so that vorticity and current are, at least in part, in phase.

"* For any A $ 0, vorticity and current have opposite signs.

The importance of the drag term will be illustrated shortly.

Fluid that is displaced into shallow water takes on a negative relative vorticity, corre-
sponding to clockwise rotation, which is then advected upslope. Fluid that is moving in the
opposite direction takes on a positive relative vorticity, corresponding to counterclockwise
rotation, which is advected downslope with that phase of the tide. Thus there is a downs-
lope flux of positive vorticity. This flux is greatest over the steepest part of the slope, so its
divergence leaves a residual vorticity, negative near the top of the slope and positive near
the bottom. Since this generation process is independent of the position along the slope,
the mean Eulerian current is parallel to the slope, and will flow with the shallow side to the
right (when facing downstream). For a clockwise-rotating tidal current, the corresponding
Stokes Drift will oppose it, which means that the net Lagrangian current is weaker than
the Eulerian current.

Without friction, the current and vorticity are exactly out of phase, and the vorticity
flux will therefore vanish when averaged over a tidal period, leaving zero residual current.
Thus the presence of friction is necessary for a nonzero residual current.

2 Stratification and Mixing

Let us now examine stratification and mixing in a bay such as the Bay of Fundy [1]. Solar
heating will, in principle, thermally stratify the water. This is what happens in a still
lake, but in the oceans, where we have flow over bottom topography, the problem becomes
more complex. We take three different approaches to the argument: first, since we're all
geophysical fluid dynamicists here, we go through a simple dimensional argument and see
what kind of solution is required. We then make a more mathematical argument by making
conservation of energy considerations as in Simpson and Hunter (1974) [2]. Lastly, we use
a highly simplified dynamical model to illustrate the role of mixing.
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2.1 Dimensional Argument

First, we establish the dimensions of the variables of the problem, The tidal flow U has
dimensions like LT- 1, where L is a length and T is a time. The depth of the fluid, H, has
dimension L.

Since we are not so much interested in the heat flux, Q, as its effect on the water
temperature, we instead consider the temperature change associated with the heat flux,
or Q(pcp)- 1 . Actually, since temperature change also means a change in density, we will
actually work with the quantity aQ(pcp)- 1 , where a = p-ldp/dT. Then the buoyancy flux
B is approximately given by

B- gaQ (6)
pcp

where B has dimensions L 2T-3. The only dimensionless contribution of B, H, and U is
BH/U 3 , suggesting that a critical value of this separates well-mixed from stratified water.

2.2 Energy Argument

Suppose we model the warming of the bay by assuming the sun shines on the surface
providing a heat flux of Q. Further suppose that only a small layer of height h is warmed
by the heat giving the water in that layer a density of p - Ap. This warmer fluid lies above
a larger layer of water with thickness H (h <K H)and density p. See Figure 1 for a diagram
of this model.

H oBefore
Mixing

H+h After}~ p-8p Mixing

Figure 1: A Model of the Bay of Fundy

The change in temperature in the top layer can therefore be given by

h-dT Q (7)
dt (p - Ap) cp'

where T is the temperature and cp is the specific heat of water. Taking Ap < p, we can
ignore the Ap term in the denominator and express the rate of change of temperature in
the top layer as

hdT- Q (8)
dt pcp
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Using the chain rule, we can write

h dp =h dp dT _ -aQ B B- -,(9)
p dt p dT dt pcp 9

Now suppose that turbulent mixing homogenizes the fluid so that it all has density
p - 6p. Mass conservation requires

Hp + h (p - Ap) = (H + h) (p - 6p), (10)

so that solving for p - Jp gives

6 Hp+ h(p-,Ap) (11)
H+h

The potential energy before mixing is given by

lgH2p + ghH (p - Ap), (12)

2
while after mixing the potential energy is

I1 (H + h)2 (p - 6p). (13)
2

Therefore the change of potential energy is

APE I ( ) P_6)-2H( p P- 4
1- g[(H +h) (Hp + h(p -Ap)) -2hH (p -Ap)- H2 p]

I g[(H+h)2p-(H+h)hAp-(H+h)2p+h2p+2hHAp]

12h
1 -g [hHAp + h2(p Ap)]. (14)

Neglecting the quadratic terms in h gives us

APE = IgHhAp. (15)
2

Dividing (15) by At and taking the continuous limit we find that the rate of potential energy
gain in the fluid is dPE I • dp 1I16

dE - -gHh- - 'pBH, (16)
dt 2 t 2

where we have used (9) for the quantity hd.
If as in the dimensional analysis case, we assume that the tides are generating a flow in

the horizontal direction of u = U cos wt, the average rate of dissipation due to turbulence is

Cdp < U3 > Q= cdp -/2 U3cos3OdO)
\J-7T/2

4 Cd U .(17)
- 37rcdpU3(

Therefore, we can expect the lake to be well mixed if the rate of dissipation is sufficiently
larger than the rate of potential energy increase needed to mix the water. Thus we expect
that B/(hU3) must be less than a critical value, just as predicted by dimensional analysis.
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2.3 A (Poor) Model

We again consider the bay to be a layer of water of height H being warmed by the sun
which provides a buoyancy flux B at the surface. Let us define the buoyancy acceleration
to be

b= -P O) . (18)

The buoyancy frequency is defined by

N2 -db (19)
dz

If we assume that the buoyancy change diffuses vertically through the bay, we can model
the evolution of the buoyancy acceleration with the diffusion equation. That is

= a KKab) (20)

where K is the diffusion coefficient. We must solve this equation with the boundary con-
ditions that there is no buoyancy flux in at the bottom of the bay and that the flux at the
top is B. Solving this problem gives

Bt Bz2

b = b0 + Bt + 2H-- " (21)
H 2HK

It remains to represent the diffusion coefficient, K, in terms of the parameters of the
problem. Suppose that

K = CUHF (Ri) (22)

where C is a constant and F is an unknown function of the dimensionless Richardson number
R, which represents how much stabilizing stratification there is in the system compared with
destabilizing shear:

N 2

R (OU/Oz)2  (23)

If we take N (H/2) to be the characteristic buoyancy frequency of the system, we have

B/2K (24)

(U/2H)
2

Solving for K and setting it equal to the definition of K in (22), we have

2BH2

K - U2 -CUHF (Ri), (25)

so that
BH I

BH7 = 2 CIF (Ri). (26)

Taking
K = 2 x 10-3UH (1 + R ,)-7/4 (27)
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from Bowden and Hamilton (1975) [3], so that F (x) = (I+X)- 7/4 . The maximum of xF (x)
occurs at x = 4/3. Plugging this value into (26) gives

H 3 X 104B-'. (28)
-673 x 1 4 B'

For values of BH/U3 > 3 x 104 , no steady solutions are possible so that the stratification
will increase with time. This value may thus separate well-mixed from stratified condition.
Using B z 7 x 10- 8 m 2 /s 3 gives

H . 5000. (29)

However, experiment shows that the critical value of H/U 3 for mixing is approximately
70m- 2s 3 , which means that this model does capture the physics accurately. From observa-
tion, the efficiency of tidal mixing is 2.6 x 10- 3,which implies that tidal currents lose most
of their energy to turbulent dissipation other than to increasing buoyancy flux.

Notes by Lisa Neef and Dave Vener.
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Lecture 10: Tidal Power

Chris Garrett

1 Introduction

The maintenance and extension of our current standard of living will require the utilization
of new energy sources. The current demand for oil cannot be sustained forever, and as
scientists we should always try to keep such needs in mind. Oceanographers may be able
to help meet society's demand for natural resources in some way.

Some suggestions include the oceans in a supportive manner. It may be possible, for
example, to use tidal currents to cool nuclear plants, and a detailed knowledge of deep
ocean flow structure could allow for the safe dispersion of nuclear waste. But we could also
look to the ocean as a renewable energy resource. A significant amount of oceanic energy is
transported to the coasts by surface waves, but about 100 km of coastline would need to be
developed to produce 1000 MW, the average output of a large coal-fired or nuclear power
plant. Strong offshore winds could also be used, and wind turbines have had some limited
success in this area.

Another option is to take advantage of the tides. Winds and solar radiation provide the

dominant energy inputs to the ocean, but the tides also provide a moderately strong and
coherent forcing that we may be able to effectively exploit in some way. In this section, we
first consider some of the ways to extract potential energy from the tides, using barrages
across estuaries or tidal locks in shoreline basins. We then provide a more detailed analysis
of tidal fences, where turbines are placed in a channel with strong tidal currents, and we
consider whether such a system could be a reasonable power source.

2 Barrages and Tidal Locks

The traditional approach to tidal power is with barrages, where a dam is set up to trap
water at high tide and then release it through turbines at low tide, exploiting the potential
energy of the trapped water. So a barrage plant will maximize its energy in a location with
a large surface area and maximal tidal amplitude. The following table shows some of the
most tidally active regions of the world:
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Mean Tidal Amplitude (m) Basin Area (kmi)
La Rance, France 4 17

Bay of Fundy, Canada 5.5 240
Annapolis Royal, Nova Scotia 3.2 6
Severn Estuary, Great Britain 4 420

Garolim Bay, South Korea 2.5 85

The only major barrage plant is located at La Rance, Brittany, on the northern coast of
France, which began operation in 1967. It has a capacity of 240 MW making it a significant
energy source, given that typical coal and nuclear plants have an output of about 1000 MW.
A disadvantage of this method is that the power source is clearly an intermittent one, which
is why there is a compromise between releasing the energy at the lowest tide and at the
period of greatest demand. La Rance was supposed to be the first of many tidal plants
across France but their nuclear program was greatly expanded around this time, and so
La Rance remains the only major tidal power plant in the world today. Although it has had
an impact on the local ecology, it has been argued that the ecology was not particularly
unique to begin with.

The only other commercially viable barrage plant is the Annapolis Royal station in Nova
Scotia, which was activated in 1982 and has a capacity of about 20 MW. It was designed as
an experimental station that would lead to an array of tidal power stations across the head
of the Bay of Fundy, which is not only very large, but it also possesses the largest tides in
the world. Such a network may be able produce an energy output as large as 5000 MW,
but the environmental consequences could be severe; the more dire of predictions suggest
that, it could lead to a 5% drop in the Bay of Fundy tidal levels and a 10% rise in New
England's levels. In any case, a better understanding of the effects of such a network would
be needed before such an ambitious project can be attempted.

Other barrage plants exist, such as in Russia and China, but none have an output greater
than about 500 kW. But the most dramatic of all proposed tidal plants is for a barrage
across the Severn Estuary, between Wales and England. There is the possibility that over
8000 MW of power could be extracted, which could supply 12% of the current UK energy
demand. Evaluations were conducted from 1974 to 1987, but the project was eventually
shelved because of economic and environmental concerns. Other schemes, similar in size to
the one of La Rance, may be implemented soon in South Korea.

3 Tidal Fences

Instead of directly using the variable potential energy of the oceans, it may be possible
to utilize the strong tidal currents that are generated through narrow channels in certain
parts of the world. We will attempt to quantify the actual amount of power that could
be extracted from such a plant. This analysis has been done previously by Garrett and
Cummins. [1]

We consider flow through a channel of variable cross-section (figure 1). The current
speed u(x, t) is assumed to be function of time t as well as x, but independent of the
cross-channel position. The dynamical equation governing the flow is
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Figure 1: A channel connects two basins with different tidal elevations. At any instant, the current
through the channel has speed u, a function of the local cross-sectional area A(x), where x is the along-strait
coordinate. At the channel entrance, the current enters from all directions, but at the exit it may separate
as a jet with speed ue, surrounded by comparatively stagnant water with elevation the same as that in the
downstream basin.

Ou Ou a(
-7 + U + 9x = -F(1)

where the slope of the surface elevation ( provides the pressure gradient to drive the flow and
F represents an opposing force associated with natural friction and possibly the presence
of turbines (in a uniform "fence" across the flow, a more efficient scheme than isolated
turbines [2]).

If the channel is short compared with the wavelength of the tide (generally hundreds
of kilometers even in shallow water), volume conservation implies that the flux along the
channel Au = Q(t), independent of x. (We neglect small changes in A associated with the
rise and fall of the tide.) Using this in (1) and integrating along the channel implies

dQ (2)L
C-- -- o L@=- F dx - -'ueluel (2)

where c = foL A 1 dx and (O(t) is the sea level difference between the two basins, assuming
that this difference is unaffected by the flow through the channel. We note that, if A
increases rapidly at the ends of the channel, then the geometrical factor c is insensitive
to their locations at x = 0, L. We allow for flow separation at the channel exit, with ue
denoting the current speed there.

We start by assuming that the natural frictional term and the head loss associated with
separation at the exit are small, so that the natural regime has a balance between the sea
level difference and acceleration. For o = a cos wt, a sinusoidal tide with amplitude a and
frequency w, Q = Qo sinwt where Qo = ga(wc)- 1 . The power generated at the turbines is
the integral along the channel of the product of water density p, current u, cross-section A,
and the local frictional force F representing the turbines. Thus the average power extracted
from the flow by the turbines is

fL L
P = pFQ dx = pQ F dx, (3)

) in

with the over-bar indicating the average over a tidal cycle. This would need to be
multiplied by a turbine efficiency factor to give the electrical power produced. We first
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assume that the drag associated with the turbines is linearly proportional to the current.
Then we may write fý F dx = AQ and P = ApQ-, where A is related to the number of
turbines and their location along the channel. The governing equation

dQ
S- gacoswt =-AQ (4)

is easily solved to give
[ ___ga ) pAg 2a2

Q = Re [A - ) e-iwt P - 2 + c2w2  (5)

As expected, P at first increases with A (more power is generated as more turbines are
added), but then decreases as too many turbines choke the flow. The maximum power,
obtained when A = cw, is

1ax= _PCWaQo.2 (6)

The flow through the channel is then reduced to 2-/2, or 71%, of its original value. We
also note that this maximum power is independent of the location of the turbines along the
channel (with the fewest being needed if they are deployed at the smallest cross-section).
This result is independent of the representation of the turbine drag.

A more realistic representation of the turbine drag would be quadratic in the current
speed. We have considered an arbitrary exponent, by non-dimensionalizing with t = w-t,
Q = QoQ', numerically solving

dQ' cost'= -A'IQ'I' Q (7)
dt'

and evaluating P/Pmax = 4A/IQIn-IQ' 2 as a function of A' for different values of n (figure
2). The maximum power for n = 2 (quadratic drag) is very close to the value Pmax derived
for n = 1, and it does not seem that any other drag law could lead to more power.

We thus take Pmax as a reasonable estimate of the maximum power available in the case
of negligible background friction and exit separation effect. We may evaluate it in terms of
conditions at the constriction with smallest cross-sectional area, Amin, where the amplitude
of the undisturbed tidal current is Unax, if we write c = fL A` dx = Leff/Amin, noting that
this effective length Leff is likely to be considerably less than the total channel length L.
Then

Pmax = pwLeffAminU2 (8)
4

This may be compared with the reference value

1 2
Po = 2pArninlumax coswt13  3 -pAminU3ax9)

which gives the average undisturbed kinetic energy flux through the channel and is usually
used as an estimate. The ratio is

Pmax 3 7 wLeff (10)

P0  
8 Um.
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Figure 2: The scaled maximum power as a function of a parameter A' representing the number of turbines

in the channel, for various values of n, where the turbine drag is assumed proportional to the nth power of

the current speed.

and can either be less than 1 (short channel, strong currents) or greater than 1 (vice

versa). For example, with w = 1.4 x 10- 4 s- 1 , as for the semi-diurnal tide, Leff = 5km,
and umax = 3ms- 1 , then Pmax/Po = 0.3, so P0 would overestimate the resource. With
these values and Amin = 5 x 105 m 2 (as for a width of 5ikm and a depth of 100m), then
Pmax 800 MW.

The calculations so far have neglected background friction and separation effects. If
these can be lumped together in a single term, as for quadratic friction in the channel, and
represented by a value A0 in (7), we may still solve (7) but the power from the turbines is
now (A' - Ao)/A' times the value calculated with A0 = 0. Here we examine the situations in
which the acceleration is much less important than friction in the channel (as for a shallow
channel) or the separation effect (as for a short channel). The momentum equation is then/L

-g = -j Fturb dx - QIQI, (11)

giving a balance at any instant between the surface slope, the drag associated fý Fturb dx
with the turbines, and the internal friction and separation, where

I= Cd(hA2)-l dx + 1Ae2. (12)

Here Cd is the drag coefficient, h the water depth, and Ae the cross-sectional area at the
exit.

In the absence of turbines, the volume flux is IQo0 = (gI@o/)1 With turbines, the
instantaneous power is pQ(g9o - aQIQI). This has a maximum of

Pmax = (2/3 3/ 2 )pQog(O = 0.38 x pQog@o (13)

where we have also averaged over a cycle. The flow at any instant is 3-1/2 = 0.58 of what
it was in the absence of the turbines, and 2/3 of the head loss along the channel is now
associated with their operation.
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If the friction within the channel is much less important than the separation effect, (13)
may be written

1
Pmax = 0.38 x pAeIUeoI3  (14)

2

where ueo = (2g9o) 1/2 is the exit speed at any instant in the natural regime. This formula
is similar to (9), but we note the reduction factor of 0.38 and, particularly, the fact that
it must be evaluated at the exit, likely giving a considerably lower value than would be
obtained at the most constricted part of the channel. The turbines could still be deployed
there, however.

In the preceding analysis we have assumed that the current is independent of the cross-
sectional position. If there is shear vertically and across the channel, we may deal with the
average speed in the acceleration term, but there will be minor changes in other parts of the
theory. We have also ignored the back effect of changes in the channel flow on the forcing
tides. This is likely to be small if the basins are large and deep, but there may be a positive
feedback which will increase the head as turbines are introduced. This will slightly increase
the available power.

Further consideration for particular sites will require more detailed analysis, but (8),
(13) or (14), whichever is appropriate, will still give a good preliminary estimate of the
power potential of a number of suggested sites around the world. We emphasize that the
commonly used estimate, based on the energy flux in the natural state through the smallest
cross-section, is incorrect and likely to be an overestimate. In general, significant power
potential depends not only on the obvious factors of strong currents and large cross-section,
but also on either the channel being long, or the currents at the exit separation, rather than
just the constriction, being large.

Notes by Viswewaran Nageswaran and Marshall Ward.
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Transmission of Rossby Wave Energy
onto Gentle Slopes

Josefina Moraes Arraut

1 Introduction

We have investigated the transmission of energy of barotropic Rossby waves from a flat
bottom region onto a gentle slope, on a /3 plane. We studied the simple case in which
topography is a constant slope and both regions are large enough so that the plane wave
approximation can be used. We have considered slopes gentle enough so that over one
wavelength (L), the variation in depth (V-H L) is small compared to the total depth H or,
more precisely, •-- is order Rossby number (c). We also made use of the of the rigid lid
approximation which renders the fluid horizontally non-divergent,

(Hu), + (Hv)y = 0. (1)

In our case, H = H0 - h, where H0 is the reference depth and h is the topographic elevation.
A mass transport stream function can be defined:

Hu = -0y, Hv= &r, (2)

which is used to write the linearized form of the potential vorticity equation:

1 f • =0. (3)
Vh -IVhVt + Vh'O×XVh H

HH

For our constant slopes this becomes:

xt + Ht ,x go,+yt+ t --t h 4xy + hy x + 30x = 0, (4)

H ' Ho H H ~ 4

where hx and hy are constants.
In the above equation we wish to retain only terms with similar orders of magnitude.

If we call X and Y the horizontal length scales of the wave in the x and y directions
respectively, and T its time scale, we get for the equation above:

' 4' Xhx 4' 4 Yhy fO Xhx f4'Yh(jX2--T +X2T H + . + + oYy(5)
XfX H y2Ty2T H YX H + XY H

The second and fourth terms are small compared to the first and third ones and are

disregarded. The last two terms are not disregarded because we are working in the low
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frequency regime (w << f). We realized after the summer that this approximation is
questionable and are still working on the consequences of removing it. We will however
keep to it in this report for we still have a very limited understanding of the dynamics that
would ensue otherwise.

With the approximation mentioned we get the equation:

V2j0t + [Vr X VQ]. ý, (6)

where the gradient of ambient potential vorticity (V'Q) is the constant vector: VQ
-L- hx:•, + fi h• + of
Ho Ho

If we choose the coordinate system so that the y-axis is aligned with V'Q, (6) becomes

h•¢t + iVQV-Qi = 0,, (7)

which is the equation for planetary Rossby waves, with f3 substituted by IV'QI. Because h,
and hy are constant, equations (6) and (7) have constant coefficients and admit plane wave
solutions. Substituting

Aei(kx+1y-wt) (8)

into (7), we get the dispersion relation:

-IVQIk (9)
k2 + 12

This expression shows that k and w must have opposite signs. The k-component of the
phase velocity, the quotient ýý, is always negative, so phase velocity is always contained
in the half plane to the left of the VQ. When IV-QI points to the North, as is the case
for purely planetary Rossby waves, or for waves on a meridionally oriented slope growing
towards North, phase propagation always has a westward component.

As noted by Longuet-Higgins, (9) can be written:

k - _ + -2 ± IVQI+42 (10)
2xsw )I) 4w)

showing that the locus of points that satisfy this relation for fixed W is a circle with centre
-IV-[ 0 , an ra ius = VQ12( 0)-, and radius r = 4-T-. If we choose the positive sign for w we get the familiar

illustration depicted in figure 1. We will make extensive use of this geometric interpretation,
so we must look at it more closely.

First we notice that the vector defining the centre of the circle is 2w rotated by
anti-clockwise. The centre vector and the radius having the same magnitude, the circle is
tangent to the origin (this is a consequence of disregarding the displacement of the free
surface, the geometrical effect of the free surface is to shorten the radius while leaving the
centre vector unaltered). These circles are level curves of the function W (k, 1). The group
velocity, which is the gradient in wave number space of this function:

w aw -Ow IQl(k2 _ 12) 21VQlk
cg = O' T1 - (k2 +12)2 (k2 +2142
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VQ

Figure 1: Longuet-Higgins' geometrical interpretation of the dispersion relation for Rossby
waves on wave number space [1]. Points on the circumference are the values of k and 1
allowed by the dispersion relation. The vectors from the origin represent wave vectors and
the ones from the origin to the centre give the direction of the group velocity.

must be radial. This becomes explicit if we rewrite (11) in polar coordinates:

(k,l) = K(cos a, sin a) (12)
IVQI (Cos IVQIF (13)

Cg K 2 (o2a,sin2a) K 2 r,

where a is the angle measured clockwise from the x-axis and K 2 = k2 + 12. We see that the
group velocity grows with IVQI and decreases quadratically with the wave number. Figure
(2) illustrates clearly why the group velocity is smaller for larger K 2.

We see from (13) that wave vectors lying on the right half of the circle have group
velocities with a westward component, while those on the other half have group velocities
with an eastward component and that the eastward moving waves are slower than the
westward moving ones.

1.1 Energy flux

If we multiply equation (9) by * and rearrange terms, we get the equation of conservation
of energy ([3])

& [(V4) 2 ] 1
a- -2 +'" -eVer 1{VQ{¢ = 0. (14)

The first term is the time variation of the kinetic energy, and the second is the divergence
of a vector, called the energy flux vector (8). By substituting the plane wave solution (8)
into (14) and averaging over a wave period (0) we see that
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Figure 2: Level curves of w(k, l).

A 2 K 2
( =c9 - = - g (E), (15)

the mean energy flux is the mean energy multiplied by the group velocity. The group
velocity however is inversely proportional to the mean energy (11), so

(1§1) = A21VQI, (16)

the magnitude of the energy flux for barotropic Rossby waves with a rigid lid is a function
only of the gradient of ambient potential vorticity of the medium [1, 2].

We now proceed to formally solve the problem of energy transmission of Rossby waves
from a flat bottom onto a straight slope. For clarity we will initially restrict ourselves to
dealing with a slope in the zonal direction, an x-slope. In interpreting the formal solution to
this and to the more general problem of a slope with arbitrary orientation, the geometrical
interpretation of the dispersion relation reviewed above will become very useful.

2 Solution for the x-slope problem

4-

Region 11 Region I

Figure 3: x-slope with impinging, reflected (region I) and transmitted (region II) waves

We want to find solutions to the equation:
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V2t+ /' = 0; x > 0 region I (17)

V2±t+ hxy + O3x= 0; x < 0 region I (18)

where x = 0 is the boundary between flat bottom and slope. We note that the boundary has

been set perpendicular to Vh. If the slope were to have a component along the boundary,

there would be a step of variable height between the regions. We wish to restrict ourselves to

the cases where Vh is discontinuous but not h, so our slopes will always be perpendicular

to the boundary. The gradients of ambient potential vorticity for regions I and II are

illustrated in figure 4. We remark again, for it will be relevant later, that they have the

same along boundary component.

1

VQ11

VQ,

Figure 4: Ambient potential vorticity gradients for a flat bottom region and an x-slope with
foh~-Ho = 13.

Equation (18) can be integrated trivially in the two open regions xr < 0 and x > 0
because it admits plane wave solutions. The physical situation we want to represent is a
plane wave impinging from region I onto region 11 (figure 3). In the stationary state we
must have the motion in region I represented by the sum of two plane waves, one impinging
and one reflected. The impinging wave must carry energy towards the boundary and the
reflected wave away from it. In region II there should be only a transmitted wave. The
kind of solution we seek is therefore:

Oik + 0,/ = Ae j(kjx+1jy-wit) + Rej (krx+Iry-wrt) x > 0 region I (19)

Vt= Te j(ktx+lty-wtt) x < 0 region 11 (20)

where the subscripts i, r, t, stand for impinging, reflected and transmitted respectively and
j = m -. A, R, T are the constant amplitudes of the waves.
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Only the parameters for the impinging wave are initially given. The others must be
found by matching conditions at the boundary (x = 0). First of all, we require continuity

of pressure and of mass transport at the boundary. If pressure were to be discontinuous,
infinite accelerations would ensue. The second condition is conservation of mass since we
cannot expect the boundary to be either a source or a sink of this quantity. These two

conditions are degenerate in this case, because the flow is barotropic, and both lead to the
expressions:

0i+0,r=?Pt, X=0 (21)

A ej(liy-wit) + R ei(Iry-wt) = T ej(lty-wtt) (22)

For this to be true for all times and all y's, we must have:

i =- 1i = ir = it (23)

W Wi = Wr = Wt (24)

A+R=T (25)

We must also determine kr and kt and for this we have the two dispersion relations:

-k+1 2, x>0 (26)

-±kt + f hx 1
H= x<0 (27)

The relations give quadratic expressions for k, so radiation condition must be applied to
decide upon the appropriate solution. That is, the value of k, is chosen so that the reflected
wave transmits energy eastward and the value of kt is chosen so that the transmitted wave
transports energy westward.

One more equation is needed to determine R and T. We obtain this by integrating
(18) across x = 0 and taking the interval of integration to zero. In this way we solve the

equation on the only point where it can't be trivially integrated. Our equation has a finite
discontinuity in one of its, otherwise constant, parameters at x = 0. We want to know if
this will impose a discontinuity in the across boundary derivative of the stream function,

and if so, to quantify this jump.

lim Ox-20 + a2] )dx- Qy=xdx + QxVydx 0 (28)

(22) and (23) show that all derivatives in the y-direction are continuous, so the second
term in the first integral is zero and Oy can be removed from the third integral. Qy is also

continuous, so it can be removed from the second integral. This leaves us with the equation:

lim -a - a2 V) dx-Oy Q xdx + Vy jQxdx 0 (29)
c- a t a x2  0
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In our problem, Q, has a finite discontinuity in x = 0 (going from /3 in region I to /3+ f hx
in region II). Its integral is therefore continuous and the third term is zero. If we suppose

a finite discontinuity in ox, the second term is also zero and the first term quantifies this
discontinuity. Since this is the only term left on the right, the discontinuity must be zero.
Ox must therefore be continuous in our problem. From this condition we get the expression:

lim (V'i + 'r) = lim V/t kiVi + kr'r = kt)tlx=_0X---0+ x---0-

kjA + krR = ktT (30)

Substituting (25) into (30) we get the expression for the reflection and transmission
coefficients in terms of the k wave numbers:

R kt - ki T kt - ki (31)

A kr-kt' A k, - k---

The problem is now formally solved, for we have as many equations as unknowns.
However, even for this simple case where we have fixed the orientation of the slope, the
solutions depend on three parameters: w, 1, hx, and it is hard to have a qualitative idea of
their behavior.

We have, for instance, to worry about the existence of real solutions for kt, given a value
of 1, in (26) and (27). A complex kt would mean an evanescent wave in x, which would
transport no energy. In other words, it would mean total reflection. Because the dispersion
relations depend on both w and hx the condition for total reflection will depend on these two
parameters. Furthermore, the reflection and transmission coefficients depend non-linearly
on 1, w and hx through k, and kt. Our main goal is to learn about the transmission of
energy up the slope, it would be interesting to have some understanding of the role the
different parameters play in this.

To gain a more intuitive grasp of the situation we will use the Longuet-Higgins circles.
We have two regions with different VQ so we will need to consider two circles at the
same time. We will not be able to choose the coordinate system in which both dispersion
relations have their simplest forms (9), so one of the circles will appear rotated from its
familiar position shown in figure 1. Since the along boundary wave number is the same for
the three waves, it is convenient to choose the direction of the boundary as the y-axis. In
our case the direction of the boundary coincides with that of VQ in region I. In figure 5 we
see, for this choice of axis and H--h /3, the Longuet-Higgins circles for regions I and II,
on the left and right respectively.

As we noted earlier, the centre vectors of the circles are perpendicular to the direction
of VQ on the anti-clockwise sense, so all wave vectors (and phase velocities) lie to the left
of VQ. The centres of both circles have the same k-coordinate, which is given by the along
boundary component of VQ. The gradient is larger in region II, where there is the planetary
/and the slope, so the circle is larger.

Figure 6 illustrates our problem. The value of 1 (determined by the choice of impinging
wave) that all three waves must have in common is represented by the horizontal line
segment. The wave vectors for the three waves must be the intersections of this segment
with the circles. The direction of the group velocities for each wave are shown as the arrows
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VQ

-- k ---- k

CC1

Region I Region II

Figure 5: Longuet-Higgins circles for VQ (region I) and VQ = (i, H hý,) with

IH h=/ (region II).

from the circumference to the centre. Figure 5 shows how the reflected and transmitted

wave vectors are chosen on the basis of the direction of the group velocity. We also notice

that, upon crossing the boundary the group velocity veers to the south.

The issue of whether an impinging wave is able to propagate on to the slope is made

clear in figure 5, where the two circles are drawn in the same set of axis. For the same

frequency, the two media have different ranges of 1 which correspond to traveling waves. If

an impinging wave has a value of 1 within the interval that is not allowed in region II, the

wave will not be able to propagate on and there will be total reflection. All waves within

the top shaded area cannot propagate up the slope. Likewise all the waves in the bottom

shaded area would not be able to propagate from the slope to the flat bottom region.

The arrows in the figure show group velocities for the critical value of 1, the value beyond

which there is total reflection. We see that for this value the transmitted wave grazes the

boundary. Beyond this value of I a transmitted wave would have to veer so much that it

wouldn't even enter region II.

The fact that R and T depend on l through k and the importance of veering to this

problem suggest that the angle of the group velocity is a more suitable variable than 1.

A k wave number can be written in terms of this variable as

k = k, - rsiny (32)

where kc, the k coordinate of the center, is QV, so

k = 2 VQ -IVQlsiny . (33)2w

Qy, the along boundary component of V;Q, is the same for both media.
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QI
------ ----- -------------- --------

r C1

Figure 6: Longuet-Higgins circles for regions I (left) and II (right). The horizontal line
segments represent the value of 1 which is common to all three waves. The intersections
of this segment with the circles are the wave vectors that obey the dispersion relation for
that value of 1 in each medium. The arrows from the circumference to the centre represent
the group velocities for these vectors. For the impinging and transmitted waves the group
velocities have a component to the west.

The coefficients R and T, having the form (wave number)/(wave number) are indepen-
dent of w. This is a consequence of the rigid lid approximation, which makes the centers of
the circles and their radii tangent to the origin and the wave numbers proportional w.

In these coordinates, R is written:

R -IVQilI sin yjl + 1VQ11 sin )'j (34)
A IVQjI sin-y + IVQIf I sin y"

Having said this and looking again at figure 7 we see that the critical value of 1 is actually
better interpreted as a critical angle, or cutoff angle for transmission (-Y,). Remembering
that the I coordinate of the centre of the circles is given by 2• and the radius by I VQ, it
is easy to write (-y,) in terms of the parameters of region II:

QII = Ir1 siny, (35)
2w

sin yc = 1 - lI. (36)IVQiiI

We now calculate T() and R(') for - h, =-3
A A HO

The results shown in figure 8 are rather surprising. Not only does the transmission
coefficient exceed 1, but it has a cusp at the cutoff angle, where we would expect energy
transmission to be zero! All of this makes one worry about conservation of energy.
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Figure 7: Total reflection: 1 wave numbers in the shaded areas are only allowed in one of
the regions.

However, going back to (14), we see that it is the divergence of the energy flux that
plays a part in energy conservation. We have no reason to expect accumulation of energy at
the boundary, so we must have zero divergence of S. As we see from (15) A, T and R give
information about the magnitude of q, but alone they don't contain enough information to
account for its divergence.

For a plane wave, all fields are constant on a constant phase line, zero divergence at a
point is the same as zero divergence on a finite interval on these lines. The condition for no
accumulation of energy at the boundary is:

JS 1 .'hdl-J S 1q.ftdl=O (37)

T R

1.75 0.75

1.5 0.5

1.25 0.25

1 Y
0.S- .5 0.5 1 2 2.5 3

0.75 -0.5
0.5 - .

0.2S -0.75

0.5 1 1.5 2 2.5 3-

Figure 8: Transmission and reflection coefficients for a an x-slope with Q, = -h = h 3.
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We have seen that the group velocity veers when changing regions, so if we were to look

at the energy flux vector across the boundary it would be something like figure 9 a).

a)• b)/

Figure 9: A wave beam, represented here by the energy flux vector, changes its direction

and magnitude as it crosses the boundary in such away that its divergence is zero.

S (which is proportional to the group velocity) veers when crossing the boundary and

the crossectional length of a beam is changed. For (37) to hold, the magnitude of 1SI must

change too. From (16) we see that ISI depends on IVQI and on the amplitude coefficient.
As the veering depends on the angle of incidence and IVQI doesn't, all the angle dependence
of ISI must be contained in the amplitude coefficient.

Figure 9 b) shows that the length factor for a beam which makes an angle -Y with the

vertical is sin -y. With this last information we arrive at the condition for no accumulation

of energy at the boundary:

A 2 - R 2 IVQIl sinyi = T 21VQHI sinyii (38)

or

T 2 sin7y IvQII R 2+ -- =1 (39)
A sinyj IVQjIj A

We call the terms on the left the transmitted and reflected energy fractions. In figure 10
we show the result of evaluating the LHS of (39) for all angles of incidence. Energy is in

fact conserved despite the awkward behavior of the amplitude coefficients seen in figure 8.
We are now ready to consider energy transmission onto the slope. Figure 11 shows

the transmitted and reflected energy fractions as a function of the angle of incidence 7YI.
We see that transmission does in fact go to zero at the critical angle (2 for this case, as
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Figure 10: Sum of transmitted and reflected energy fractions calculated according to (39)

shown by the plots and as calculated from (36). We see also that energy transmission is
maximum for Y Z. This corresponds to K (0, 0), or a steady current. All energy from
a steady current is transmitted onto the slope. The veering is such that the steady current
remains perpendicular to VQ in the new medium and the length factor for this veering
exactly compensates for the change in IVQI, in equation (39). Transmission falls off as IKI
increases towards both sides on the circle.

ET R2

1 1.

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.5 1 1.5 2 2.5 3 Y 0.5 1 1.5 2 2.5 3

Figure 11: Transmitted and reflected energy fractions for the x-slope with Q. = £ h. =/3.

2.1 X-slopes of Different Steepness

Although we have up to now worked with a fixed value of h,, changing it brings no surprises.
As h, grows, VQJI gets closer to the x-axis and the circle for region II closer to being tangent
to the x-axis. This means that only impinging waves with a southerly group velocity
component are allowed on the slope (cutoff angle = 1L). However, large slopes violate
the assumption that h-L is small, made to obtain our wave equation and we shouldn't
really worry about them. Figure 12 a) shows plots of the transmitted energy fraction for

-L h,, = 3, 2/3, ... We see that the behavior in all these cases is qualitatively similar
but with a cutoff angle approaching ' and the transmitted energy fraction falling off more
rapidly with increasing IkI for the larger slopes. This is just as one would expect, for it
should be harder for energy to proceed up steeper slopes.
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Figure 12: Transmitted energy fraction for a x-slope with foh./Ho varying from -6/3 to 6/0
and angle of incidence in relation to north (y) varying from 0 to 7r.

3 Slopes with Different Orientations

Rotating the slope (and boundary) around brings more interesting consequences. By rotat-
ing the slope we can give the gradients of ambient potential vorticity in the different regions
any relative orientation, including parallel and anti-parallel. In figure 13 a) we show the
dispersion relations for a flat bottom region and a slope going up towards North. We see
that all 1 wave numbers allowed in region I are also allowed in region II, so some energy
can propagate up to the slope for all of wave numbers. As the relative angle between the
gradients increases, their dispersion relations move apart in phase space and the two re-
gions share less common 1 wave numbers. Transmitted energy fractions (TEF) for several
of these cases are shown in figure 14 a) as a function of the angle of incidence measured
from North (-y + 0). We see that as the angle between the gradients increases, the band
of waves allowed on the slope narrows, but the transmitted energy fraction is always 1 for
-Y + 09 2 or incidence from the east, which corresponds to (k = 0,1 = 0). Figure 14 b)
shows the transmitted energy fraction for all relative all orientations of the boundary and
angles of incidence.

If a slope that grows towards the south is steep enough to overcompensate for the
planetary /3, the gradients of ambient potential vorticity for the two regions are anti-parallel.
As can be seen in figure 13 a) , this means that they have no waves in common, except
for (k = 0, 1 = 0). The steady current would be the only possibility of Rossby wave energy
exchange. However, this movement is East to West and therefore along the boundary. As
far as Rossby waves go therefore, the two regions are isolated. Dispersion relations for this
case are depicted in figure 13 b).
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Figure 13: Dispersion relations for a flat bottom region and a) a y-slope growing towards

north, b) a y-slope growing towards south.

4 Concluding Remarks

This work was intended as a simple first step in the investigation of energy transmission
from mesoscale oceanic eddies onto the gentle continental slopes. In using the approxima-
tion of small depth perturbations we have confined ourselves to representing behavior not
far from the foot of these slopes. In this context, the rigid lid approximation is not an
additional restriction for it requires wavelengths to be small compared to the Rossby radius
of deformation, which for the flat bottom open ocean is of order 2000Km.

We believe the main weakness of this work is the neglect terms 2 and 4 in equation 4.
They are considered small when compared to the other slope terms (5 and 6) because, for

the low frequency regime we are working on, 1 << fo. However, terms with corresponding
components of th have different spatial scales. For Rossby waves these spatial scales (X
and Y) may be very different, invalidating the assumption on the relative sizes of the terms.
We have realized this after the summer was over and are now working on understanding
the effects of keeping the terms.
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Forced Non-normal Convection

Vineet K. Birman

Abstract

We consider non-linear amplitude equations for double and triple diffusive convection
close to marginal stability. We study the effect of non-normality on double and triple
diffusive convection. We also consider the effect of small amplitude noise on the system.
We observe that non-normality is not sufficient to take system away from basin of
attraction of stable fixed points. Small amplitude noise along with non-normality can
cause the system to go away from basin of attraction of stable fixed point. We also
discuss the different regimes of behavior observed as the frequency of noise is changed.

1 Introduction

The importance of non-normality in transition to turbulence in shear flows has been inves-
tigated by many researchers. Non-normality was proposed as a possible explanation (c.f.
Trefethen et al. (1993), Grossmann (2000)) for turbulence observed at Re numbers lower
than those predicted by linear stability theory for shear flows. Non-normality is not im-
portant for Rayleigh convection as the linear operator is normal. We study the effect of
non-normality in case of double diffusive and triple diffusive convection. Small noise can
be amplified due to non-normality as observed by Gebhardt & Grossmann (1994). We also
study the effect of small amplitude noise in case of double diffusive convection. In all cases
we will study the amplitude equations for the system close to marginal stability.

Double diffusive convection, first suggested by Stommel et al. (1956) is a important
geophysical phenomenon. Double diffusive convection is an important process in formation
of stars. Double diffusive convection is also important in order to understand the ocean
convection. It has been observed that close to marginal stability double diffusive convection
can start even with small noise as shown in fig 1 from Shirtcliffe (1967).

Non-normality as a possible cause of instability was first considered by Trefethen et al.
(1993) and Gebhardt & Grossmann (1994). Trefethen et al. (1993) suggested a nonlinear
bootstrapping mechanism consisting of amplification of disturbances due to non-normality,
resulting in nonlinear mixing such that, output of nonlinear mixing is again amplified by non-
normality. This mechanism is shown in fig 2. A more detailed description of works to study
non-normality as possible pathway to turbulence is given in review paper by Grossmann
(2000).

Most of the literature concerning study of non-normality is confined to their study for
shear flows such as Baggett et al. (1993). The linear operator for shear flows are highly
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Figure 1: A section of temperature record near marginal stability. Differential output of two
thermocouples is plotted against time. This transition is possible below marginal stability

with small noise due to non-normality. Plot from Shirtcliffe (1967)

non-normal. The linear operator for the nonlinear amplitude equation obtained for dou-
ble and triple diffusive convection obtained by Arneodo et al. (1985) and also Coullet &
Spiegel (1983) is non-normal too. This suggests the possibility that non-normality can play
important role even for convection flows.

Role of noise in non-linear dynamical systems has been studied for long time, Locher
et al. (1998) is a review article listing important works done in the field. Even though

we confine our study to single frequency small amplitude noise, our observations are in

close correlation to observation for stochastic noise in dynamical systems. We find our
results support the works done by Ganopolski & Rahmstorf (2002), where they suggest the

possibility of climate change due to stochastic resonance.
In §2 we describe the system of equation considered. Linear analysis is described in §3.

We obtain linear amplitude equations for our system in §4.We obtain nonlinear terms for
the amplitude equations in §5. Finally the results are described in §6.

2 Equations

We consider two dimensional motion in a box of depth d (in z), width 7d/a (in x) and

infinite length (in y), c.f. fig (3). We choose AO and AE, the magnitudes of the vertically
impressed differences of temperature and salinity, as the units of temperature and salinity.

The length and time units are d and d2 /KT, where KT is the thermal diffusivity. The
equations are, c.f. Arneodo et al. (1985) & Chandrasekhar (1961),

0tAT = 0A2 T- aRO + -+ UTSaXE + U2TDzT + J(P, A T), (1)

ate = Ae - axT + J(I, e), (2)
at = •-,, D + o•i + J(,, E), (3)

OtT = AT - 9OzxP + J(,I, T). (4)
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Figure 2: The suggested bootstrapping mechanism by Trefethen et al. (1993) leads to growth
and instability.

where,
J(f,g) =O.fDzg - DzfOxg, A = -2 + ;2

The parameters are defined as,

gd3 A p
R - , (5)

KTV P T
9d3 Ap

S =
KSV P S

T 2Qd 2 2

T •-K

KS

S--
KT

where, R is thermal Rayleigh number, S is salinity Rayleigh number, T is Taylor number,
a is Prandtl number, T is Lewis number, (Ap/p)T is the density difference solely due to
imposed temperature difference and (Ap/p)s is density difference solely due to imposed
salinity difference. Q is the rotation rate about the z-axis.

The solution is independent of y. T is the stream function for the x and z velocities, e
and E are the deviations of temperature and salinity from their static values, and T is the
y velocity divided by oT 1 /2 .

We can express above equations concisely as

OtLU = MAU + N(U) (6)

where
U(x,z,t) =11 1p,O,E,T IIT (7)

The parameter vector A is
A A(,S,T,1,Ta). (8)
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Figure 3: Two dimensional box of depth d and length wd/a.

The linear operators in eq. (6) are,

V2 0 0 0

L= 0 1 0 (9)
0 0 0 1

and cr•V4 -uRD• cYSD• o9TDz

M -& V 
2  

0 0

9 0 V 2  0 (10)

-az 0 0 uV 2

The non-linear term is,

N(U) (L&zUE')DU - (La,,UE')OzU (11)

where
El--11 0 0 01

is the transpose of E.

3 Linear Theory

The linearized form of equation (6) admits solution of form,

U = Umn * 7.r.nest (12)

where, Umn is a constant four component vector. "7rnn is defined as

sin(max) sin(nrwz)

7mn - cos(max) sin(nwrz)
cos(rnax) sin(n7rz)
sin(max) cos(nrwz)
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and the operator * is defined such that

a a aa
b * )3 _bf3

c -y c-Y
d J dS

s is a root of,
det 1 Mm-n - Lmns 11= 0 (13)

where Mmn and Lmn are the matrix representations of the restrictions of M and L on E-mn.

They can be found by substitution of eq (12) into eq (6).

rqm4n mao-R -macTS -nwcx 2T

Mmn(A) = -ma -q~n 0 0ma 0 0 (14)
-- n7T 0 0 --cqmn

and
-q2n 0 0 0

Lmn(a) 0 0 1 0 (15)

0 0 01

where
2 22 22

qmn ma +n 27 (16)

The fundamental in z is the most unstable of the vertical modes (as in Rayleigh- B6nard
convection, Chandrasekhar (1961)), so we assume instability is encountered only for n = 1.
When instability first occurs, it does so for a given value of a with m = 1 (Arneodo et al.
(1985)). For m = 1 and n 1, eq (13) is a quartic,

4 + P 3 s3 + P2 s2 +P1I8 + Po = 0 (17)

where,

Po = 7r 2 Ta2Tq 2  a2 Y2 TSq 2 _ a 2cr2 TRq2 + 2- Tq 8, (18)
P1 = 72 a2 (T + 1)T - a2 T(c + 1)S - a2 U(ci + )R + or( + a + 2T)q 6 ,

7r2ca2 T a 2 aTS a2ciR
P2 = 2 2 2 (2 + 2T + 2o +"T)q4,

q2 q2 q2

P3 = (I + 2c + T)q 2 .

where q = qlI.
We are looking for triple polycritiality point. This is a point in phase space of R, S and

T such that R = R0 , S = So and T = To given by eq (23) where we have three marginally
stable modes and all other modes are stable. Close to this point behavior of the system can
be obtained by studying the behavior of these three stable modes. The condition for this is
given by, c.f. Arneodo et al. (1985),

P0 = PI = P2 = 0 (19)
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and eq (17) becomes
83(8 + P3 ) 0 (20)

Dividing eq (17) by (s + P3) we get,

s3 + P2 s + (PI - P2P3) + P P3(P1 - P2P3) 0  (21)
s + P3

In the neighborhood of the polycriticality condition (eq (19)), we have roots Isl < P3

and we develop the remainder. We obtain an cubic critical polynomial for the marginally
stable modes.

P,(s) - s 3 + /2S2 + /s + po = 0 (22)

where,

Po A P1  Po
P31 P3 T3

P2  P1  P0
II2~+2

The condition for polycriticality, eq (19), can be written as,

o = qq6 (T + 2o) (23)
a20-(1 - a) (1 - •-)'

q 6T2 (1 +2o-)
a 2 0-(O- - T)(1 - T)'

q6 U(1 + a +'F)TO-7r2(0- - T-)(I - a)"

Let A0 be a point on the polycritical surface defined by eq(23) or equivalently (It

(PO, P1, P2) = 0). Normal mode associated with s = 0 satisfies,

Wo * E:l = 0 (24)

where 0 is constant vector. Let Mo = MnI(Ao) and Lo = Lii(a). For s = 0 in eq(13) is det
Mo = 0, and we solve for eigenvectors and generalized eigenvectors,

Mo- = 0, MoO = Lo0 , Mo0 = LoV. (25)

Solving eq(25) we obtain,

aa - 1T, (26)
q2 Tq2 ' oq 2

a -a 7F

q4, T2 q4 cU2 q4 [T
-a a -wTr

IIoq6 IT73 q 6 c03 q6
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4 Linear amplitude equation

The differential equations satisfied by coefficients (amplitudes) of the vectors are called
amplitude equations. Considering the linearized form of eq(6),

OtU = L-'MU (27)

Near polycriticality, only three characteristic solutions are nearly marginal, rest are damped
normal modes. At polycriticality we define U as,

U = [A(t)¢ + B(t)4 + C(t)x] * El (x, z) (28)

We want to derive an equation for amplitude vector A = (A, B, C). For A = A0 we have,

A= JA (29)

Extending it to parameter space where A 0 A0. Suppose we select three vectors , 1 * ,
V,\ * Ell and x * 7-11, that together form the stable modes. So, we have

U = [A(t)¢0,\ + B(t)0,\ + C(t)X,\] * Ell (x, z) (30)

Thus the eq (29) is deformed into linear amplitude equation for A $ A0 ,

A = K),A (31)

where K,\ satisfies following conditions,

K)\o = J, (32)

det(K), - sI) = Pa(s).

Since there are only three free parameters in Pa(s), we want to express K), in only three
parameters. The Jordan-Arnold canonical form has this property and we use it, c.f. Arneodo
et al. (1985). This gives us a third order equation which can be written as,

+ -P24 "+ 1 --+ poA = 0 (33)

or writing it as,

_A = B, (34)

B=C,

C= - 112 C - plB - pokA.

which is equivalently to
A = JIA (35)

where, 0 1 0!

J/= 0 0 1 (36)
P0 1 0

This is Jordan form of K,\.
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5 Nonlinear terms

We seek nonlinear terms in amplitude equation eq(35) of form,

A = JA + g(A) (37)

Employing the general method used in Coullet & Spiegel (1983), we express the time de-

pendence of U(x, z, t) in terms of A as,

U(x,z,t) = V[x,z,A(t)] (38)

Substituting eq(37) and eq(38) in eq(6) we obtain

£V = N(V) - (g. &A) LV (39)

where,

= DL - M,

D=(JA).OA , M=MAo.

We expand V and g in Taylor series in A and denote partial sum of all terms of degree K

as V, and g,. Thus VK(x, z, cA) = cKVK(x, z, A). We now need to solve,

LV, = 1, - (g, . OA) LV. (40)

where,

KZ-,Af(VK-,Va) - Zgn-a+l" 0ALVa,

Ag(U,V) = L&zVE' axU- LOxVE' 0zU.

By successively solving for different orders we can obtain higher order terms. We will not

do the entire solution here as it can be obtained from Arneodo et al. (1985). The final

amplitude equation with non-linear terms can be written as,

S+ 
(/12 - k 3 A 2  - k6 A A)A4 + ([LI - k 2A 2  - k4 AA - k5A2)A + (po - kIA 2 )A = 0 (41)

where kl,k 2 ,,k6 are constant coefficients. Their expression can be obtained from Arneodo

et al. (1985).
Since we want to consider the behavior of the system near the polycriticality point given

by eq (23), we can consider asymptotic expansions of form,

R = Ro +eR 1 +E 2 R 2 +...,

S = So+ESI+C2S2-...,

T = To+ETi+E 2 T2 +....

and scaling given by,

T = Et, A = E3/ 2 X.
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Expanding eq(41) using eq(42) and eq(42) to obtain amplitude equations of third order,
which are

"X + ,i 2 ax + A.id + iox = klx 3  (42)

We have x 5 term in the next order nonlinear terms. We include x5 in some cases where
we need additional fixed points for the system to prevent the solution from blowing up. So
the amplitude equation if we include the x 5 term from the higher order nonlinear terms is
given as,

"XT + -2X + AtI + o0X = klx 3 - 1X5  (43)

This amplitude equation can be rederived for double diffusive convection case where
T = 0. The equation we will obtain (Coullet & Spiegel (1983)) will be (x 5 nonlinearity
included),

li + flxi + ftox = klx3 - lx 5  (44)

We intend to study the effect of the non-normal operator on this system looking for
possibility of going out of basin of attraction of a stable fixed point of the system with small
initial perturbations. We will also study the effect of noise on this system and possibility

of chaos due to presence of small amplitude noise.

6 Results

The second order amplitude equation with A 5 nonlinearity (eq (44)) has five fixed points,
given by

2k1 + 1' Ak= ± 11, - 21 411to1 (45)

2;1 z 21 J
The bifurcation diagram for these set of equations is shown in fig 4 for 1/ = 0.71, ki = 1

and 1 = 0.5. The solid lines indication the stable solution while the dashed lines indicate
the unstable solution.

We have used 4th order Runge-Kutta Scheme to integrate the ODE's. We have used
constant time step. The time step was chosen to be At = 0.001 for all simulations discussed
here. This time step is small and integration converges for all cases discussed.

6.1 Basin of attraction of origin

Basin of attraction is defined as the region of states, in a dynamical system, around a
particular stable steady state, that lead to trajectories going to the stable steady state. We
are studying the basin of attraction of the origin.

Fig 5 shows the basin of attraction for eq (44) for the stable fixed point at origin. The
basin of attraction is shaped like a slit. It does not close as shown in the figure but extends
till infinity. As the figure was calculated numerically it gets truncated.

We have observed that due to non-normal nature of eq (44) even if we give a small
initial perturbation inside the basin of attraction the amplitude grows and goes close to
the boundary of basin of attraction before decaying back to origin. This suggested that in
presence of small noise the system could go away from origin even with very small initial

disturbances.
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Figure 4: Bifurcation diagram for the amplitude equation. Solid line represents stable
solution and dashed line is unstable solution.
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Figure 5: The basin of convergence of Origin for second order amplitude equation with

pl=0.5, 110 = 0.006, k, = 1 and 1I 0. Two trajectories are shown. One starts just
inside the basin and ends up at the origin, while the second trajectory starts at a point just
outside the basin and goes to infinity.
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Figure 6: Even small amplitude noise can make big difference. We show the system with
pi = 0.7, 10 = 0.1, ki = 1, 1 = 0 and c = 10-3. Three different trajectories are shown for
w 2.4 (dashed), 2.55 (solid) and 2.7 (dashed again). All have same initial perturbation.
This illustrates the importance for small amplitude disturbances in the system.

6.2 Small amplitude noise system

In any physical system background noise of small amplitude is always present. In present
case we have only considered marginally stable modes but the stable modes are still in the
background and can be considered as background noise. Thus it is important to understand
how system behaves in presence of small amplitude noise.

It would be very difficult to analyze the system with random noise. So we considered
putting noise of particular frequency. This physically can be explained as the most dominant
frequency in the noise. Ultimately we would like to consider the effect of random noise as
well.

The modified equations with the noise for triple diffusive system can be written as,

A + 1A 2 A + jlIA + foA = k1A 3 - 1A5 + cAsin(wt) (46)

and for double diffusive system is,

A + f•tA + AoA = k1A' - 1A5 + eAsin(wt) (47)

where, E is atleast an order of magnitude smaller than anything else.
Figure 6 shows three different trajectories for w = 2.4, 2.55 and 2.7. A frequency of 2.4

makes the system unstable even though we started well within the basin of attraction of the
unperturbed equations. For w = 2.55, we see the system go into an almost periodic orbit
for a very long time before decaying back to origin. Figure 7 shows the behavior of A with
time for this case. It is clear from this figure that we go into a orbit very close to periodic
orbit for w = 2.55. The system decays down to origin for w = 2.7. It is clear the we can
go to other states even after starting in the basin of attraction of origin with small noise in
the system.
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Figure 7: Nearly periodic orbit for w 2.55 till t P 80 We can make system stay on this
orbit longer by choosing a more suitable frequency.

It is also possible to go to infinity even if we start infinitesimally close to origin as
shown in figure 8. There is range of w values that can take the system out of the basin
of attraction even with very small initial disturbances. This physically seems to suggest
that background disturbances even of very small magnitude can make system unstable in
linearly stable region.

We get a range of interesting behavior if we take 1 0 0 in eq 47. We started increasing
w from 0. For very small values, w < 1.1, almost no effect of the noise is seen on the system
and for small initial disturbances the system finally goes to stable fixed point at origin. As
w is increased further the system goes away from origin into whats seems like a chaotic orbit
as seen in fig 9.

4

-1

-3~~ .- . ...... .....

-25 -2 -1.5 -1 -05 0 0.5 1 1.5 2 2.5
A

Figure 10: For w = 1.9 seems to go into a periodic orbit.
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Figure 8: Initial disturbance was of the order of 10-3 and still we find a range of frequency

of small amplitude noise that takes the system to infinity As we show here with• pi 0.71,
p0 0.1, c 10 -3 and Lo = 0.01.
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-202 - 1 -. 0.5 1 1.5 2 2.5
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Figure 9: The system with pi = 0.5, 0 -= 0.1, e = 10-3 and 1 = 0.5. The system above
with w = 1.2 seems to go into a chaotic looking orbit.
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Figure 11: For w = 10.0 seems to go into a periodic orbit around the outer fixed point.

When the frequency is increased further we observe there is a small range of frequency
that again take it to origin. Further increasing the frequency takes the system into a
periodic orbit around the outer stable fixed point. This orbit is stable and system stays in
this periodic orbit as shown in fig 10.

Increasing frequency further, we go in a regime where the system goes into periodic
orbit around the outer fixed point. This periodic orbit is also stable, shown in figure 11. If
the frequency is still increased further, the system goes to origin again. Further increase in
frequency does not lead to any further change in this behavior.

7 Conclusion

Non-normal growth is observed for double and triple diffusion convection near the poly-
critical surface. This suggests that apart from shear flows non-normal growth can also
be important in double diffusive convection as a pathway to turbulence, as suggested in

Trefethen et al. (1993).
Non-normal growth along with the bootstrapping mechanism is not sufficient to take

our system away from stable fixed points. We thus considered the possibility of noise along
with the bootstrapping mechanism as considered in Gebhardt & Grossmann (1994). We
have clearly demonstrated that small noise along with the non-normal nature of system
leads to possible escape route out of the basin of attraction of stable fixed point for double
diffusive systems.

We observe a range of behavior exhibited by the system as the frequency of the noise
term is varied. This behavior appears similar to stochastic resonance in nonlinear systems
(c.f. Locher et al. (1998)). We are able to observe range of frequencies that can take the
system away from stable fixed points. We also observe that a very small disturbance with

correct noise frequency can cause the system to go away from the basin of attraction. This
supports the suggestions that rapid changes in ocean circulation may indeed be possible
even with small disturbances to current environment (c.f. Wiesenfeld & Moss (1995) and
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Ganopolski & Rahmstorf (2002)).
Results suggest that small noise have important effect even in linearly stable regime in

non-normal systems as non-normality amplifies the effect of noise. Further work is need to
consider effect of white noise and possible obtain a probability distribution of escape from
basin for different noise levels.
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Parametric instability of internal waves with rotation

Visweswaran Nageswaran
University of Massachussets,Amherst

1 Introduction

Internal gravity waves carry a lot of energy in the ocean and are known to be unstable.
Their eventual breakdown thus has a significant effect in the oceans because the waves
cause substantial mixing. Internal wave driven mixing not only affects the local circulation
patterns but also energitically controls the global-scale meridional overturning circulation
as suggested by previous results, and hence is vital for understanding of past, present and
future climates([2], [4]). A substantial portion of internal wave energy is in the form of an
internal tide. The internal tide is created by the interaction of the barotropic (astronomical)
tide with rough topography. A variety of recent results have mapped out global locations
of efficient internal tide generation. However, once generated, the internal tide does not
necessarily break down and produce mixing near the generation site. Observations from
the Hawaiian Ocean Mixing Experiment show that a low mode internal tide can propagate
up to thousands of kilometers from it's generation site. The global pattern of tidal mixing is
therefore strongly influenced by the dynamical instabilities that can efficiently drain energy
from a propagating wave. Recent 3-D simulations of the model(M2) internal tide done by
Mackinnon and Winters [5] suggests that the M2 tide loses energy at a particular latitude
where the tidal frequency is twice the local inertial frequency. This raises a lot of interesting
questions regarding the instabilities. For example, what is the growth rate of the instabilities
at the crtical latitude?.What are the dynamic nature of those instabilities?.

Resonant wave triad interactions offer a framework to investigate the wave interactions
causing the instability of the primary M2 tide. Neef and Mackinnon [3] have modelled
the phenomenon as a system of one primary (tidal) wave and two close to subharmonic
(M2/2) waves and show that as one approaches the critical latitude the rates of tansfer of
energy get larger.However the above approach suffers from the drawback that at the critical
latitude the frequency of the subharmonic waves appropaches the local inertial frequency.
Therefore they cannot be treated as propagating waves anymore. In fact, the MacKinnon
and Winters simulations show that the growing instabilities at this latitude look like pure
inertial oscillations.

Motivated by their results, we have undertaken a series of analysis to look at the in-
teraction between a large-scale propagating tide and small-scale near-inertial oscillations
at a latitude where the tidal frequency is twice the local inertial frequency. our primary
goal would be to study the growth rates of instabilities that drain energy away from the
primary M2 internal tide at, the critical latitude. In sections 2 and 3 we do a linear stability
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analysis on the primary M2 internal tide within the framework of Boussinesq model with
constant stratification frequency and study the growth rate of the instabilities at the crit-
ical latitude. In section 5 we propose an analytic approach that models the interaction of
the primary internal tide with the instabilities and derive the growth rates for the fastest
growing perturbations.

2 Numerical approach

We consider the inviscid Boussinesq equation with rotation and with constant stratification

frequency N.

DuDt f V p. (1)

Dv + fu = -Py (2)

Dt
D-- - b = -Pz 

(3)

Ux + Vy + Wz = 0 (4)
Db
D--- + N2W = 0 (5)
Dt

where (u, v, w) is the velocity,p the pressure , b the buoyancy and

DD-- = at + Uax + Vty + wDz

Linearising equations (1)-(4) we get

Ut - fv = -px (6)

vt + fu = -Py (7)

wt + b = -p, (8)

bt + N 2 w = 0 (9)

V.u = 0 (10)

The M2 internal tide given by

U = acos(mx - at) cosnz (11)

V = af sin(mx - at) cos nz (12)

W = asin(mx - at) sin nz (13)
-N 2

B - cos(mx - at) sinnz (14)
a

is a solution of (6)-(10). where a is the M2 tidal frequency = 1/(12.4 hrs),nr 2w/ocean
depth = 27/4000 ,m is a typical horizontal wavenumber = 27/l5Okm for midlatitudes and
la' is a typical tidal velocity, on the order of 5 cm/s. Motivated by the tide propagating
north from Hawaii, we're considering a tide propagating purely northward with infinite
zonal wavenumber - hence there is no y dependence.
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3 Floquet system governing the instability of the M1 internal

tide

To investigate the stability of M2 internal tide we consider perturbations around this
state.Let

u = U+u',v = V+v',w = W+w',b= B+b',p= P+p'. (15)

Linearising the equations (1)-(5) for small perturbations u',v',w',b',p' gives (after dropping
notation uniformly),

Du+U

5F- -uU. +t wU;z - f V = -P.-
Dv +F +uV1 + wV, + fu = -py

Dw + b = -Pz
Dt

5t-+ uB,, + wBz+ = 0

u, + Vy + Wz = 0

Where
D =O +9 a + y +Wa (16)

Dt Di Ox Ty

We now introduce the following scalings

(x,y,z) = (mx*,my*,nz*)

(U, V) (g*, y*)
W =--W*

n
072

B a2 B*
n

(u,v) = (U*,v*
m
w = -- W]

n

b =N2 b*
n
7r2b =-•P

The equations of perturbation become

Du - a sin (x - t) cos (z)u - a cos (x - t) sin zw - -v = -Px (17)
Dt a

D-u- af cos(x - t) cos (z)u- a-sin (x - t) sin (z)w + -u = -py (18)
Dt a faf (

Dw N 2  n
D---acos(x-t)sin(z)u-asin(xv-t)cos(z)w -- mp (19)

Dt
0-- + anz + w = 0 (21)
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D = ot + a cos (x - t) cos zax + a f sin (x - t) cos zOy + a sin (x - t) sin z

We now try a solution for (17)-(21) of the form

u = u(t) Cos yze'(ax+oy)

v = v(t) cos yze,(ox+Py)

w = w(t) sin -yze'(x+Ofy)

b = b(t) cos yze'(ox+)
5 y)

p = p(t) sin Yzet(ax+fy)

where the z dependence is chosen to meet the rigid lid top and boundary conditions.After
substituting for u,v,w,b,p and taking

ax(17) + ay(1 8 ) + 0z(19)

we solve for p in terms of u,v,w,b and back substitute in equations (17)-(20).This gives us
a system ordinary differential equation

Xt = AX (22)

L(ao3f + a(a 2 + Z(% + ,3f)(/32 + -y2k)) cos z
sin (t - x) - a32-Y sin (t - x) sin z tan -yz-

ay 3k sin (t - x) sin z tan yz + aa cos (t - x)
((213f - Z/2 + y2k))cos z + 2vy sin z tan yz))

-(L(ao2 f + f7-2 k + zaQB3(2z + /3f) cos z sin (t - x)-
aaf3-y sin (t - x) sin z tan yz + a cos (t - x)
((-%Cf20 3 + f(a 2 -/32 + -2k)) cos z - 2z%3y sin z tan yz)))

-(L csc 'z(-z-yk sin(yz) (of + aa(2 - zl3f) cos z sin (t - x)+
aoe-y sin (t - x) sin z tan -yz) + a cos (t - x) (a2 + '32 + -y2 k) cos(-yz)
sin z + yk sin('yz)(a 2 - 2z3f) cos z + 2y sin z tan yz))))

a cot (-yz)sin (t - x)sin z

L(132f + f-Y2 k + zaa 2/3 cos (t - x) cos z - zaac3 2f cos z sin (t - x) + aa/5-y sin (t - x) sin z tan -yz)

zL(-(aa(oz 2 + Y2k) cos (t - x) cos z) + aIff(a 2 + Y2 k) cos z sin (t - x)+
z(a/3f + a-y(a 2 + -7

2k) sin (t - x) sin z tan -yz))

-ykL(-taf - aa/3cos (t - x) cos z + a/32f cos z sin (t - x) + za/-y sin (t - x) sin z tan yz)

0
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aL(ao sin (t - x)(-((-2z + /3f)-ycosz) + (20f - %-Y2 ) sin z tan yz)+
cos (t - x)(a2 Ycos z + (-a 2 +/3 2 + -y 2 k) sin z tan yz))

-(aL(a/3cos (t - x)(-(-ycosz) + 2 sin z tan-yz) + sin (t - x)(O(-2z + 3f)-ycosz+
(Zj3y 2 + f(a 2 _ '32 + y2 k)) sin z tan yz)))

-(aL csc yz(-(-y(a 2 + 32 + Y2 k)cos(yz) sin (t - x) sin z)+

z sin -yz(a cos (t - x)((a 2 +±32) cosz + 2-yksinztan-yz)-
sin (t - x)((-z/32 +/33 f + a 2 (-Z + ,3f) + Z72 k) cosz + -y(23f/- ZY2 )ksinztan'yz))))

-1 + a cos (t - x)cos z

(e2&+o2 )F 2 L
U2

a(-we cos (t - x) cos z+
sin (t - x) (t3f cos z+
y cot(yz) sin z))

and
X = [u,v,w,b]t .

Since the matrix A is periodic with period 27r we can use floquet analysis to determine
the stability/instability of the perturbations. The Floquet multipliers of the system then
correspond to the growth rate of the perturbations. For a given x,y and z and for a given
value of a, 0, -y we can find the floquet multipliers which in turn determine the growth rate
of the instabilities. From Floquet theory we know that there exists a constant matrix E
which satisfies

X(r + 27r) = X(-r)E,VTr (23)

The fioquet multipliers are now defined as

p = log A

where A is the eigen value of E.The real part of y corresponds to the growth rate.If the

absolute value of an eigen value is greater than unity then the perturbation is unstable.
To determine E numerically let W(O) be the 4x4 identity matrix whose columns are the
initial conditions for the system. Integrating (22) numerically from 0 to 27r let us denote by
W(27r) the matrix whose colums represent the solution of the system at time t = 27r. From
(23) we get E = W(O)->W(27w).ie,

E = W(2w)

4 Numerical results and discussion

Since we are interested in what the fastest growing modes are at the crtitical latitude we

analyse the growth rates of the perturbations at the critical latitude. This corresponds to
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Figure 1: Theoretical growth rate vs Numerical growth rate

the case when L - 0.5. We expect the growth rates to vary with depth. Since the waves

and perturbations are uniform in the x,y direction we can fix x = 0 = y and analyse

the growth rate for different values of z. For the numerical calculation we fixed a =

1,0 = 0 and computed the growth rates numerically.The results are shown in figure 1

for z=0.02 fixed. The growth rate increases with the increase in amplitude of base wave.
Also for a fixed amplitude the growth rate increases asymptotically to a constant value with

increasing verical wave number for a given amplitude. The highest growth rates corresponds
to wave numbers greater than ten. Infact for a fixed amplitude the growth rate shows a

sudden increase for wave numbers greater than ten which suggests that the fastest growing

instabilities have vertical scales which are ten times smaller than that of the original base
wave. This agrees with the numerical simulations done by Winters and Mackinnon as well.

However detailed numerical calculations need to be done to verify the results for a range of

parameters a, ,8, - and compare it with the theoretical prediction.

5 Analytical study of growth rate of instability at the critical
latitude

We now do an analytical study of the growth rate of perturbations at the critical lati-

tude,near the inertial frequency. We now introduce the following scalings (u, v) = Rf(u*, v*), b =

N 2 Hb*, p = N 2 H 2 p*, t* = ft where R = N is the Rossby deformation radius and H the

depth of the ocean. The scales for x,y are given by (x*,y*) = (•, •) respectively. Nu-
merical results, and observations from the Hawaii Ocean Mixing Experiment (HOME) both

suggest that the strongest instabilities occur near the boundaries, where the tidal velocities
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are largest. Hence the scale for z is given by

Z = -Z (24)

where c2  is small. We also use the hydrostatic approximation N 2 »> 2. After
dropping the * notation for convenience the perturbation equations become,

DuDu + auU, + awU, - v = -p,Dt
DvDt + auVx + awVz + u = -pv

Db
D- + uBx + wBz+ =0

uX + Vy + Wz 0

Since the vertical scale of the perturbations is small compared to the horizontal scale(as
suggested by the scale for z in (24)) we let w = Ew, b = eb.Then p scales with 02 and the
equations can be written as

HT + auUx + acwUz - v = -E2px
Dv2

D-+ + auVx + acwVz + u = -E py
-Pz + b = 0

Ux + Vy + Wz = 0
Db
D--- x + auBx + awB, + cw = 0

If we choose a = E2a2 where a2 is an 0(1) constant,then the equations can be written as

Du + C2a 2 uUx + E3a 2 wU - v =--2pxDt

Dv + C2 'V± aw + =Dt -- Ea2Ugx + E3awVz + u -c 2- py

--p, + b = 0
Ux + Vy + Wz =0

Dt + Ea 2uBx + c2a 2wBz + Ew = 0

where,

D = at + 2a2Vay + Ea2Waz (25)
Dt

We can further approximate cos ez ..• 1, sin cz c cz in lieu of the fact that the interaction
takes place near the boundaries.

Numerical experiments reveal that the evolution of the instabilities takes place over
several cycles of the primary M2 tide. Hence we assume that the variables depend on both
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the fast time scale t and the slow time scale t2. The appropriate slow time scale for the
problem is t 2 = E2t. Note that the advective derivative now becomes

DD--t = 0t + E2 a2 [Ot2 Ut9 + VOy + W&z]

We now inroduce the complex field

q = u + iv

and
= x + iy

The solution to the O'th order equations can now be written from Ben-Jelloul,Young(97)
[1] as follows

qo = Azze-•

wo = -Mce- + c.c

bo = zMe-t + c.c

Po zA~e-t + c.c

where
M = A, (26)

O(62)

q2,t 2 + iq2 = -Ro

R0 contains resonant terms i.e, terms proportional to e-' t and non-resonant terms. In order
to be consistent with our assumptions we require that there are no resonantly growing
terms which would cause the perturbation q2 to grow larger than qo. Hence equating the
coefficient of R0 that is proportional to e't to zero gives us an slow time evolution equation
for A which is,

Azz V2A + zYe 'Azz = 0 (27)

where (1±+ )mr
7 = a2(I+br4

We try a solution A of the form,

A = sin (kz)A(x, t 2 ).

then A 0 and A 1 satisfies,
A(x, t2) = Ao(t) + Al(t)eirx

and A0, A 1 satisfies,

A0 + iA-= o

A1 -i ( ) A 1 -- ' 2 A1 = 0 (28)
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The solution of (28) is a linear combination of eslt and es2t where sl and S2 are given by

± 1,82- (•-
2

The maximum of the real part of S, and s2 determine the growth rate of the perturbations
in slow time scale.

The predicted theoretical growth results suggests that the growth rate depends only on
the vertical wave number k and the amplitude a2 of the perturbation. Also the form of the
solution given by (28) suggests to us that the fastest going perturbations have the same
horizontal structure as that of the base wave. The growth rate increases with the increase
of the amplitude and the vertical wave number. For a fixed amplitude the growth rate (see
fig 1)shows a sudden increase for wave numbers greater than ten which illustrates that the
vertical structure of fastest growing perturbationsare almost a factor of ten times smaller
as compared to the base wave.

6 Conclusion

We have developed an anlaytic and a numerical model to study the growth rate of instabili-
ties at, the critical latitude.Both the thoeretical and numerical model predicts that the time
period for the instabilities is roughly around 10-12 days which is relatively short. This has
resulted in a significant improvement in our understanding of the role that internal tides
plays in mixing. Most previous results(for example [2] ) examine the role of internal tides for
deep water mixing in the ocean. However, our new results and also other recent numerical
results [5], now suggest that strong instabilities of the internal tide near the surface may
lead to elevated tidal mixing in the upper ocean. Mixing in the upper ocean affects the rate
heat, gasses and nutrients are moved around and stored on really short timescales (months
to years), and so understanding upper ocean mixing is more relevant to ecosystem and
climate evolution on short time scales whereas deep water mixing is generally important on
longer time scales. Another fact that also emerges from our studies is that this is a very
rich problem and offers a lot of scope for further work. An useful addition would be to carry
out the anlaysis when the base wave is a plane wave which are exact solutions to (1)-(5).
Also considering Beta plane effect and viscous effects will be an useful advance as well.
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Triad Resonance as a Mechanism for Internal Wave
Dissipation

Lisa Neef
University of Toronto

1 Introduction

Breaking of internal waves, i.e. the nonlinear transfer of energy from internal waves to
turbulence, drives deep ocean mixing. Both the sources and sinks of internal wave energy
in the world ocean, however, are spatially variable. It is estimated that roughly half of
internal wave energy in the ocean is produced by the movement of the barotropic tide
around topography, which generates internal waves with the same frequency. Where and
when mixing due to the internal tide occurs, depends on two factors: the strength of the
internal tide generated around a particular piece of topography, and the mechanisms that
cause this internal tide to cascade into smaller scales, which then break and cause mixing.
The magnitude and distribution in time and space of neither of these is well understood.

Much research is currently focused on how efficiently a particular topographic structure
generates an internal tide. Furthermore, it is not well understood how far, in each case, a
particular internal tide will propagate, and where and by what mechanisms it will deposit
its energy. Recent studies(e.g. [1], [2]) have suggested that mixing due to internal wave
breaking happens to a large extent in "hotspots" near rough topography.

MacKinnon and Winters [3] showed, using an idealized model, that an internal tide of
M 2 frequency seems to efficiently break into waves of roughly half the M 2 frequency, and
smaller vertical scale, suggesting that Parametric Subharmonic Instability (or PSI, i.e. the
class of resonant wave-wave interactions wherein energy is transferred from a primary wave
to two recipient waves of half the primary frequency and smaller vertical scale, and the range
of interactions where the secondary waves are near this half-frequency) could be a significant
mechanism of energy transfer to smaller scales. The efficiency of this interaction increased
dramatically as the waves approached the critical latitude where the M 2/2 frequency equals
the inertial frequency (f). The results of MacKinnon and Winters suggest not only that PSI
could be a significant mechanism of energy transfer out of the internal M2 tide, but also that
this mechanism is strongly latitude-dependent. Though PSI has previously been thought
too slow ( [4]) to be an important mechanism for the transfer of energy into smaller-scales,
MacKinnon and Winters argue that it might be much faster than previously thought in the
nearfield of the generation site, where the internal tide is coherent.

In regards to latitude dependence, it is not clear why the efficiency of these interactions
should increase so much near the critical latitude. One factor could be the fact that, near
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the critical latitude, the waves with frequencies close to the subharmonic frequency have
group velocities near zero, and, by breaking close to where they are generated, could create
a "hotspot", where mixing is several times stronger than at lower latitudes. It is not yet
known, however, how the efficiency of PSI interactions themselves actually changes with
latitude, regardless of the group velocity of the resulting subharmonic waves. If PSI is
indeed a significant factor in internal wave breakingg, its latitude dependence must be
carefully examined.

The purpose of this paper is to find the intrinsic dependence of PSI interactions on
latitude, or, more precisely, on the inertial frequency, f.

This will be done by rederiving the well-known triad equations for the case of internal
waves with rotation of the earth (Section 2), and then integrating them numerically (Sec-
tion 3). Section 4 then compares the results of the numerical integration to the established
analytical solutions to the problem.

The greater purpose of this study is to help improve understanding of the spatial and
temporal structure of tidal mixing, that is, how and where energy is transferred out of the
internal tide. This is necessary in order to better understand the structure of the global
ocean circulation, which requires both a map of the tidal generation sites, as well as a
dynamical understanding of how much energy from the internal tide is lost to dissipation.
Before PSI is dismissed as a dissipation mechanism, it must be considered for a coherent
primary wave, and its latitude dependence examined. Understanding of this dependence is
necessary for the correct modeling of energy dissipation of the internal tide.

2 Resonant Triad Model of Weakly Nonlinear Interactions

2.1 Derivation

We begin with the governing equations,

Du = 1 p (1)0-+u'Vu-fv - (-1)

at PO ax
0v 1 ap
- +u Vv+fu - (2)
at +Po 0 y

Ow 10p /-±9 +u.Vw -- p g (3)
at Po 0z
apt dpoP--- + W - 0 (4)
at dz

Vu = 0. (5)

One possible way to approximate weakly nonlinear interactions is via a resonant triad model.
It is helpful to nondimensionalize by characteristic length, velocity, and time scales, so that
different scales of motion can be examined. We thus scale the variables by typical velocity
u., length scale k., and the time scale w,1 of our primary wave, a typical propagating
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internal tide. Thus,

(U, V,H W = .(j jV (6)
x - (7)

k,*
t (8)

where tildes indicate nondimensional quantities. The pressure-gradient terms on the right
hand side must have the same dimensions as the left hand side. If we assume that the linear
terms are dominant, the pressure-gradient terms must scale like the linear terms on the left
hand side:

pou,* (9)
k•pt

We also define a nondimensional inertial and buoyancy frequencies, respectively,

f = w,, (10)

N= Nw, (11)

which are both scaled with respect to the linear wave motion.
Plugging (6) - (9) into (1) - (5), we have

At 1 dp u*k*- - - - U. Vft+ ff), (12)

dt p o d& w*

and similar equations for b and Cv. The nonlinear terms in these equations will be small if
the quantity U,

(13)

is small. (13) shows that E is the ratio of typical particle speed to the typical phase speed
of the waves.

Equations (1)-(5) can be combined into a single equation:

tt(--V2 - azz)w - N 2 V 2w - f 2OzzW

-E[V 2 (U. Vb) - atV 2 (u. Vw) + axzt(U. Vu) + azt(u . Vv) -

fOyz(U" Vu) + f09x(U" Vu)] = 0 (14)

A useful tool for describing the impact of weakly nonlinear interactions on the linear
dynamics is to define multiple time scales of motion. Having already defined a typical time
scale of the primary wave, and nondimensionalized the governing equations by this time
scale, we now introduce a comparatively slow timescale,

-T Et"t, (15)

with corresponding nondimensional time

,= : . (16)
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T is defined with respect to the magnitude of the nonlinear terms.
The time derivatives in (14) then become

0 0 0
a a (17)

-at 5-t + -O-T(
02 02 02 20at2  + 2,E02 -• 2 0 T 2  

(18)

Substituting the right hand sides of (17) and (18) into (14), the 0(E0 ) balance is

ott(-V2 - Oz,)w - N 2 V 2w - f 2Ozzw = 0. (19)

This is the linear component, and admits wave solutions like

W = Wiei(kix+ziy~miz-wit) =- wie 6i°, (20)

with wi subject to the dispersion relation

= N 2 k? +l1 +f 2n1 (21)

2 ~2t

Substituting the linear solution (20) into the linear parts of (1) - (5), we can find polar-
ization relations which relate u, v, p, and b to the prognostic variable, w:

m(ikw - fi) (22)
iw(k 2 - 12)

m(ikw - fk) (23)

iw(k 2 - 12)
W 2 _ N2

p = gp(W) w (24)mw
-iN 2

b = gb(W)- w (25)

The O(E) balance is

a2
2-(V2 + zz)W=

-V 2(u Vb) - 0tV 2 (u. Vw) + azxt(u" Vu) + O2yt(U. Vv) - fazy(U. Vu) + f0zx(U. Vv),(26)

where V2 is the horizontal Laplacian.
In order to model the nonlinear interaction as described by (26), we will seek solutions

like

W ~z(T)e i(kiiy+mizw•t) + (T)ei(kix+1iy+-iz-it) - • z2(i-)eW° + c.c. (27)

(27) is a sum of solutions to the linear problem. The complex amplitudes zi(r-) = wi(-)ei¢•

are allowed to vary on the slow timescale, to reflect the nonlinear interactions between the
component waves.
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(27) can then be substituted into (26) . Individual terms on the right hand side will
then look like

= (s2 0s3 09SI 0S3 0982 0S3
U+ l -- "-'")±+U2(-5X -5)X +-"VI-(-'7 +-- +---""

D9X ax Dx Dx y
= ul (k 2 s 2 + k 3S3 + ... ) + U2 (kis 1 + k 3S3 + .-. ) + VI (1282 +"13S3 + -.. ) +

E = Zz kjsj +ZEm El1Sa+ZEwi EmiSj (28)
i j2 i i jii i j~i

where s is can be one of the four system variables u, v, w, b.
Using the polarization relations (22)-(25), individual terms in (28) can be written in

terms of the amplitudes zi and phases 0i of each component wave, e.g.

uikjsj zigu (zi) eiOi-kjg (zj) zje' 6i. (29)

Consequently, derivatives of terms like u • Vs will bring down factors of ki + kj, 1i + 1j,
mi + mj, and wi + wj.

Plugging (27) into the left hand side of (26) gives

2iZWk + 1+ -9 k. (30)
k

If we now consider the evolution of a particular wavenumber component (ko, mo, w0 )
by averaging both the left hand side and the right hand side over the period of that wave,
the terms on the right hand side that will balance the left hand side will be ones where

0, + O0 = 00. (31)

The simplest possible nonlinear interaction we can consider is therefore a triad of waves

where (31) holds, or, more specifically, where

k-+k2 = k0 (32)

11+12 = l0 (33)

ml + m2 = rn 0  (34)

W1- +W2 = WO0 (35)

The equations for this interaction found by truncating (26) for the triad of waves, so
that (27) becomes

3 3

w E > zi(T)e2 0(t) + c.c. = E Wi(-r)ei(Oi(t)+Oi('r)) + c.c. (36)
i=1 i=1

Plugging (36) into (26) and factoring out the complex exponentials in the individual

terms as in (29) and (30), and applying the resonance condition (31), such that the phases
of the individual waves, eOie divide out, we are left with equations for the evolution of the
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complex wave amplitudes, zi(T), on the "slow" time scale (see Appendix for details). The
resulting model is then given by

j0 = -iFozlz 2  (37)

il = -iFlzoz* (38)

i2 = -iF 2 zoz (39)

where the a, time derivative has been replaced with a dot. For each wave, the corresponding
interaction coefficient Ti is a function of the wavenumbers of the two interacting waves. The
interaction coefficients are derived in the appendix.

2.2 Comments

1. It is important to remember that the system (37) - (39) describes the coupled fluc-
tuations of the amplitudes of the three waves, not the waves themselves. However,
the individual fields of each variable can be found, for each wave, by substituting the
amplitudes wi of each wave, and the appropriate wave numbers, into the polarization
relations (22) - (25). The frequency of the actual waves will be proportional to that
of the triad interaction by a factor of c.

2. The appropriate combinations of wavenumbers cannot be arbitrary, but must be cho-
sen so that both the dispersion relation (21) and the resonance condition for each
dimension (32) - (35) are satisfied. Thus, for example, given some horizontal struc-
ture described by (fixed) horizontal wave numbers ki and 1i, decreasing wi means that
the corresponding set of available vertical wavenumbers mni will have larger values.

3. While the triad equations (37) - (39) can be easily integrated numerically, it is trickier
to find resonant sets of wavenumbers and frequencies which also satisfy the disper-
sion relation. For example, suppose that the frequency, wo and spatial wavenumbers
k0 , 10, mo of the primary wave are known. This leaves eight unknown parameters,
but the system is then constrained by four resonance equations (32) - (35) and two
dispersion relations, leaving two degrees of freedom. Thus, given the primary wave, it
is only possible to choose two more wavenumbers in either one of the two secondary
waves, say, for example, k, and 11. In this case, k2 and 12 will be given by the appro-
priate resonance conditions, and ml, M 2 , wl, and w2 must be found by solving the
system of equations given by the remaining resonance conditions (34), (35), and the
dispersion relations (21) for wave 1 and wave 2. Such a system is impossible to solve
analytically, but can be solved numerically.

4. It is easily seen from the triad equations (37) - (39) that the amplitude of energy
exchange for each wave is proportional to the interaction coefficient for that wave -
the wave with the smallest interaction coefficient exchanges the least amount of energy.
It is also clear from the triad equations that the amplitude of energy exchange also
depends on the initial amplitudes of the waves themselves, and their phases relative
to each other.
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5. The rate of change of each wave amplitude, and therefore the triad interaction fre-
quency, is also a function of the initial amplitudes, and the interaction coefficients.
It is this interaction frequency, and its dependence on the three sets of wavenum-
bers, on which this study focuses. It will be computed numerically in section 3, and
analytically in section 4.

2.3 Methodology

In this study, we are interested in systems where the secondary waves (waves 1 and 2) have
horizontal structures similar to that of the primary wave (wave 0), frequencies that are
fractions of the primary wave frequency, and the appropriate vertical structures that result
from satisfying both the dispersion relation (21) and the resonance conditions (32) - (35) .
We therefore fix the parameters of the primary wave, with w0 = 1 and k0 , 10, and mo equal
to three values given in Table 1. In order to simplify the problem, we choose l0 = 11 = 12 = 0,
thus reducing the problem to two dimensions while preserving the presence of the planet's
rotation. This leaves one degree of freedom, which we choose to be W1. Now, varying W1, the
corresponding w2, kj, and k2 , ml, and "22 can be computed from the problem's constraints.
We are thus in effect varying the frequency of the secondary waves and computing the
corresponding horizontal and vertical structures.

For a given wl, there exists a set of possible combinations of ml and k1 , with consequent
parameters for wave 2 given by the resonance condition. This is shown graphically in
Figure 1, a plot of the vertical wavenumbers m, that satisfy each choice of w1 . This so-called
resonant trace has four different branches, two of which have large vertical wavenumbers
as w1,2 -- w0. The interaction coefficients in (37)-(39), and thus the interaction frequency,
will be different for each branch.

The interaction frequency along these resonance traces will also depend on the other
parameters in the dispersion relation, namely the buoyancy frequency, N, and the inertial
frequency, f. Since the focus of this study is on the effect of latitude on the triad interaction,
N will be kept constant (N = 10, in nondimensional units), while f will vary from 0 to
wo/2. For given f > 0, only those triads with Wl,2 Ž: f will be allowed by the dispersion
relation, thus truncating the resonant trace outside of the interval [f, wo - f].

3 Numerical Results

Figure 2 shows the exchange of energy between three waves satisfying the resonance condi-
tions, for a simple case where f = 0 and the primary wave is about an order of magnitude
larger than the two daughter waves. The wavenumbers of the resonant triad in this example
are given in Table 1. The corresponding fluctuation of a single wave, wave 0, is shown in
Figure 3, where we have chosen e = 0.05. Figure 4 shows the composite wave field w(x, z)
for the same example, at t = 0 and again at a time halfway through the period of the wave
interaction. At the half-period time, the vertical structure is considerably smaller, simply
because Wave 2 (m2 = 13.36) is dominant.

In this example, the frequency of energy exchange is about 0.75, on the nondimensional
slow timescale. This means that exchange of energy between the triad members happens
at a fraction of 0.75E of the frequency of the primary wave, wo.
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Resonant Trace for o)= 1, f = 0
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Figure 1: Pairs of frequency and vertical wavenumber satisying the resonance condition and
dispersion relation, for wo = 1 and 10 = 11 = 12 = 0.

Wave Initial Amplitude Initial Phase w k M F,
wi qi

0 1.0 3 -1 -1 10 -40.3
1 0.04 5 0.49 .12.1 -246 -4.74
2 0.02 5 0.51 -13.1 256 -5.34

Table 1: Initial values, wavenumbers, and interaction coefficients of the component waves
in a sample resonant triad.

Triad Energy Exchange

Wave I
Wave 2

1.2

.0.8

E 0.6 8

0.4 - 0 8

0.2 .

"-- - i .- - i - - -- .

0 0.5 1 1.0 2 2.0 3 3. 4

time

Figure 2: Exchange of energy between the three waves in a resonant triad. In this example,
f = 0, and the wave frequencies are wo = 1, Wi = 0.2, W2 = 0.8. Initial wave amplitudes
and phases are given in Table 1.
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Figure 5 examines the interaction frequency for triads with wo = 1, and values of w,
varying over the interval [f, w0/2] (with w2 changing in the other direction, to satisfy (35)).
This plot has different characteristic curves, corresponding to the different branches of
the resonant trace (Fig. 1). As shown in Figure 1, for a given value of wl, and taking

10 = 11 = 12 = 0, there are typically three or four possible wave number combinations
that satisfy both the dispersion relation and the resonance condition. Hence, a plot of
the interaction frequency as a function of w, has several different characteristic curves
of interaction frequency. Four different increasing values of f are shown. Triads where
m, > 5mo are indicated with an x. These indicate daughter waves with small vertical
structure, the waves most likely to break and cause mixing.

For f = 0 the interaction frequency varies slowly with Wl,2, with a minimum at W1,2 =

wo/2. For increasing f, however, one of the resonant curves develops a sharp rise in the
interaction frequency as w1,2 -` wo/2. These are precisely those resonant triads where

m, > 5mo. As f approaches wo/2 (the critical latitude), the band of available values of
w1, 2 becomes smaller. This result is well known. It is surprising, however, that the overall
interaction frequency seems to increase with increasing f.

Figure 6 shows the interaction frequency as a function of the three interaction coeffi-
cients, for the case f = 0. For each particular Fi, there exists usually more than one set of
corresponding Fj, Fk, and thus more than one corresponding interaction frequency, making
these figures difficult to interpret.. The dependence of the interaction coefficients on the
resonant sets of wavenumbers (see Appendix), is similarly complicated. We now appeal to
known analytical solutions to the triad equations to shed light on why the above numerical
results are what they are.

4 Analytical Solution

It is possible to find an analytic solution to the system of triad equations (37) - (39), by
deriving the system's invariants and transforming it into a single ODE.

First, it is helpful to transform the wave amplitudes so as to make the equations sym-
metric. This can be done by defining three "stretched" new wave amplitudes,

z 2 ( (40)

6 1F (41)Z:1 VF---

Z2 2 (42)

The triad interaction equations then become

o -i(1(2 (43)

1 --(0(2 (44)

( (-01, (45)

plus the three complex conjugate equations.
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Triad Interation Frequencies - Numerical Solution
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Figure 5: Interaction frequency for all possible resonant triads over a range of values of
W1,2, with everything else held constant. Points marked with an x denote triads where the
vertical wavenumer of wave 1 is greater than five times that of wave 0.
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Figure 6: Interaction frequencies as a function of the three interaction coefficients, computed
for a range of resonant triads with f = 0 and wo = 1.
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Two invariants to the system are easily found. One is the energy,

1(ol 2 + IKul2 + 1(21' = Ao, (46)

and another is given by one of the Manley-Rowe relations:

1(11 2 - 1(212 - A1 . (47)

Taking the time derivative of (43), and substituting (43) - (45) and their complex con-
jugates, and (46), gives

.d(clC2)_ 1

-o = ---- (1(--2 (o Ao- 1(12  (48)
dt 2

This equation can be integrated twice to find an equation for Co(t). (48) can be separated
into its complex and imaginary components. Letting

(o = uoe&, (49)

(48) becomes
uo+iýoo + iýouo + iýo~do _ ýo2uo 2 (50

0+ioio -- uo Ao- . (50)

The imaginary component of (50) is easily integrated:

S2 = 0
00 u0

-ln 0o+lnu2 = A 2

_ 2 A•bouo A3 (51)

The real component of (50) can now be rewritten using (51):

U A3 _ Aouo - u (52)
u 3 2

This can be integrated as well, to give

1102 + A3 Ao U2 1 (53)
0 2 4

Now writing x = uo, we have

-= x 3 -2Aox 2 + 4A4 x - 4A3

=:-27r(x). (54)

Now (54) can be written as an integrable ODE, of the form

1 (dx/dt)2 + 7r(x) = 0,
2
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Elliptic Integrals
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Figure 7: The complete elliptic integrals K and E as a function of the parameter m.

where 7r(x) is a cubic function, with roots a > b > c.
If 7r(x) has three real roots and b < x(O) < a, solutions x(t) oscillate in a "potential

well" bounded by the roots a and b. These oscillatory solutions are proportional to Jacobi
Elliptic functions, with a period of

6
T = 2 (cK(m) + (a - c)E(m)), (55)

where K and E are the complete elliptic integrals of the first and second kind, respectively,
and a-b

M = a (56)

These are plotted in figure 7.
While this expression for the period is somewhat complicated, it can be interpreted in

terms of the roots of 7r(x), or the shape of the potential well. Assuming, for example, that
the third root, c, stays constant, and letting c = 0, if the distance between the two largest
roots increases (that is, if the size of the potential well increases), the parameter m will
increase as well, E will go to zero, and T will decrease. If the distance between the largest
and smallest root (a - c) increases relative to a - b, then m -* 0, which means K, E --4 7r/2,
and, again, T will decrease. The interaction frequency, therefore, can be interpreted in
terms of the shape of 7r(x).

The roots of 7r(x) depend on the invariants in (54), which in turn depend on the initial
wave amplitudes, as well as the interaction coefficients, which of course also depend on f.
Figure 8 shows 7r(x) plottted for w, = .4, and two values of f. As f approaches wi, the
shape of ir(x) changes for one of the four solutions- the distance between the largest and
smallest root becomes bigger, corresponding to a smaller interaction period (and higher
interaction frequency).

Figure 9 shows the interaction frequency, computed analytically, for a range of w1 , at

four different values of f approaching the critical latitude, as in Figure 5.
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Figure 8: The potential function given in (54), for all 4 sets of resonant triads with w0  1,
and Wu, 0.2. f = 0 in the top panel, and f = 0.2 in the bottom panel.

Triad Interation Frequencies - Analytic Solution
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Figure 9: As in Fig. 5, but for the analytical solution given by (??): Interaction frequency
for all possible resonant triads over a range of values of w1,2, with everything else held
constant. Points marked with an x denote triads where the vertical wavenumer of wave 1
is greater than five times that of wave 0.
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As in the numerical integration of the triad equations and the above analytical reasonin,
the interaction frequency at the subharmonic peak increases as f increases - thus showing
that the behavior found in section 4 was not simply a numerical peculiarity.

5 Conclusions

This study has investigated the rate of energy transfer via triad resonance out of the internal
M 2 tide.

"* We have shown numerically that the efficiency of PSI increases as the waves approach
the critical latitude where the Coriolis parameter f equals half the primary frequency,
•o.

"* This property is not simply a consequence of the fact that wo/2 waves have zero
group velocity at the critical latitude, but seems to be an intrinsic property of the
triad equations.

"* Since the triad equations are integrable, and analytical solution can be found, and
the relationship between the system parameters, particularly f, and the interaction
frequency can be examined more closely.

This study is a simple exercise intended to cast the more or less established and known
properties of PSI into the context of the internal tide. Several things remain to be ex-
amined. A closer examination of the analytical solution and its relationship to f may be
possible, especially if it is possible to cast the potential function w(x) and its roots in a more
transparent form. The problem should also be extended to the three dimensional (1i $ 0)
case. The realistic numbers corresponding to the nondimensional results shown above (that
is, an estimate of e) also need to be considered.

6 Acknowldegements

I would like to thank the GFD coordinators and staff for giving me the opportunity to
participate this summer, for teaching me a thousand things about tides, how to be a scien-
tist, and softball. I would especially like to acknowledge Jen MacKinnon for all her help,
especially the mega mathletics sessions at Walsh Cottage, late night pizza/chocolate pro-
visions, endless patience and tons of enthusiasm. Thank you to Leo Maas for explaining
Jacobi Elliptic functions to me, and for lots of helpful comments. Lots and lots of props
also to Team Lazy (you know who you are) for consistently bringing the funny, even at 3
a.m. Thanks to all the amazing fellows, who's company I'm still intimidated to be in, and
to Shreyas and Shilpa, who should have lost patience with me, but didn't. I'm knitting hats
for everyone.

178



7 Appendix

To derive the triad equations (37)-(39), we substitute (36) into (26), and apply the resonance
condition,

00 = 01 + 02. (57)

The modulation of wave 0 by the other two waves can be found by plugging

r (58)

where zo(T) is the slowly-varying, complex amplitude of wave 0, into the left hand side of
(26), and expanding each term on the right hand side in terms of waves 1 and 2. The left
hand side then becomes

a2 &2(V 2 + &zz)Zoei°o - 2iw 2 k+ + 2+ -e (59)

On the right hand side of (26), the first gradient term becomes

-V2(u Vb) _V2 Ub 2 + b2 + b2 + bl W2_ Obi-Vu.b -V ul " + -- vi -- wy - + l"• -U2X + V2-y + W2 0--

ax y Dz ax ayz

= -V 2 i [(Ulk 2 + V112 + wIM 2 )b2 + (u 2 ki + v211 + w2 mI)bi].

Substituting the polarizations relation between u and w, (22), and between b and w,
(25), the right hand side becomes

-iV 2AoWlW 2 ,

where

Aowlw 2 = [k2g.(wl) + 12gv(Wl) + m2gw(Wl)]gb(w2)
+ [klgu(W 2 ) + llgv(W2) + mlgw(W2)]gb(Wl) (60)

Expanding the complex amplitudes and applying (57), the right hand side becomes

-iV 2Aozjz 2ei0Ie°2 = -iV 2 AozIZ 2ei~o

= i k 0+l AozIz 2 ei°°. (61)

The other terms on the right hand side of (26) can be expanded in a similar way:

-OtV 2 (u. Vw) = k + l1 woBoziz 2 ei°° (62)

Ozzt (u Vu) = -mokowoCoziz 2eiOo (63)

Ozyt (u Vv) = -molowoDoziz 2 eiOo (64)

-f0zy (u. Vu) = ifmoloCozIZ 2 ei°o (65)

f-a. (u Vv) = -ifmokoDozz 2e . (66)
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Now setting the expanded left hand side (59) equal to the combined terms on the right
hand side (61) - (66), and we can solve for the rate of change of the complex amplitude of
wave 0:

aZG - 2,o(iAo + woBo) - mowo(koCo + loD) + ifmo(loCo - koDo) Z1Z2

-0•- 2woK H

-iroz1z 2  (67)

where

S2 k 2 + 1
2 2 + 12

•H,O k+~

Equations for the modulation of waves 1 and 2 can be computed in a similar way, with
a similar set of parameters [A1, B 1, C1, D1] and [A2, B 2, C 2, D 2] comprising the interaction
coefficients F1 and F2.
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Elastic-skinned gravity currents

Anja Slim

1 Introduction

We investigate a thin layer of very viscous fluid that flows down a slope due to gravity.
However, instead of the usual free surface, the fluid is covered by an elastic plate. This
allows for interesting wrinkling patterns to develop on the fluid surface.

One motivation for considering this problem is lava flows. A pahoehoe lava flow could
be crudely considered an elastic-skinned gravity current. As a flow advances, it solidifies at
the surface, forming a crust whilst remaining molten in the interior. An interesting aspect
of these flows is the surface features that can be produced. One form, known as 'ropy'
pahoehoe lava, is shown in figure 1(a). The traditional explanation for this phenomena is
that the fluid beneath the crust pulls at it, and drags it into folds (see Ollier [2]). However,
Fink and Fletcher [3] observed that the buckling was most prominent downstream of a
constriction or a sudden decrease in bottom slope. They proposed that the explanation for
buckling is that faster fluid pushes crust above it into crust above slower fluid. The resulting
compression causes buckling. They also modelled this assuming the lava was semi-infinite
and with a depth dependent viscosity.

A second motivation comes from experiments done by Clayton and Belmonte [1] with
micellar fluid. Instead of mixing the two components of micellar fluid (aqueous solutions
of surfactant and organic salt), they pumped one into the other. This resulted in a gravity
current forming with an elastic interface between the two components. Clayton and Bel-
monte performed experiments on a slope, and observed fingering similar to that seen in a
viscous fluid (see, for example, Huppert [4]). However when the volume flux was reduced
during an experiment, buckling was observed along the fingers, as seen in figure 1(b).

The aimof this report is to begin to understand elastic-skinned gravity currents and
buckling on their surfaces. It is organized as follows. In §2 we give a brief overview of previ-
ous work done on elastic-skinned gravity currents and general problems in hydro-elasticity.
In §3 we outline some simple experiments and results. These experiments were performed
to obtain a qualitative appreciation of the main features of these gravity currents. In §4 we
formulate the governing system of equations. In §5 we present some preliminary analysis on
three problems related to the currents. The first considers how the fluid influences buckling,
the second considers how fluid traction at the base of the elastic plate can induce buckling
and the final problem begins to combine these aspects to model the gravity current of the
experiments in §3. Finally, §6 presents some conclusions and discusses future work.
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(a) (b)

Figure 1: (a) Ropy pahoehoe lava. (b) Wrinkling observed on a gravity current finger
between aqueous surfactant and organic salt solutions. From Clayton and Belmonte [1].

2 Previous work on hydro-elasticity

There has been much work done on problems of interaction of elastic materials with flu-
ids. Major areas of application are to blood flow, flutter and drag reduction. Arteries are
modelled as elastic-walled tubes filled with fluid, see for example Grotberg and Jensen [5].
Flutter usually refers to high Reynolds number flow over thin objects which causes vi-
brations, for example on aeroplanes (see, for example, Gee [6]). The application to drag
reduction comes from an observation (for example Benjamin [7]) that replacing part of
a solid wall by an elastic membrane increases the background velocity at which a turbu-
lent boundary layer forms. Geophysical applications include modelling wave propagation
through ice sheets on the ocean surface as waves in an elastic plate above an inviscid fluid
(for example Chakrabarti et al. [8]). A further geophysical application is to magma flow
through elastic-walled volcanic conduits (Balmforth et al. 2004 [9]).

To our knowledge, the only work that has investigated elastic-skinned gravity currents
is the recent work of Hosoi and Mahadevan [10]. They studied the two-dimensional 'peeling'
problem associated with fluid forced between an elastic plate and a rigid base, with which
the plate is initially in contact. They model this system using the lubrication equation
coupled with a linear plate equation.

3 Experiments

To investigate the behaviour of elastic-skinned gravity currents, we carried out experiments
with a set-up as shown in figure 2. An elastic plate, either cling-wrap or exercise stretch
band, was clamped to a rigid base and corn syrup was pumped between them.

The experiments were preliminary, although some qualitative observations can be made.

Figure 3(a) shows the system with no initial slack (the plate was initially flat on the rigid
base). Two important points about this configuration are that no wrinkles are visible
and that, the black line, which was perpendicular to the clamped edges before the fluid
was pumped in, has not perceptively deformed. Figure 3(b) shows the system with an
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Figure 2: The experimental arrangement.

initial slack and with a fluid volume insufficient to fill it. Wrinkles are prominent and are
clearly oriented downstream. Some other general points are: for a given flux and slack, the
wavelength of the wrinkles increases with increasing width and increasing angle of slope;
and the wavelength increases as the material becomes stiffer. 1

(a) (b)

Figure 3: (a) Advancing front of the fluid beneath the elastic plate (exercise stretch band)
for a case with no initial slack. No wrinkles are apparent. (b) A case with initial slack and
clear wrinkles in the elastic plate (cling wrap).

1The wavelength was also observed to increase downstream from the source, but this is possibly an
artefact of the way fluid was injected.
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Figure 4: The elastic plate in its (left) undeformed and (right) deformed configuration. The
undeformed coordinates are (X, Z) and the deformed (x, z). The horizontal length scale for
the deformation of the plate is L and the vertical L. The half-thickness of the plate is d.

4 Governing equations

There are three aspects of the configuration that need to be modelled: the elastic plate, the
viscous fluid and the interaction between the two. We present equations for these in §§4.2,
4.3 and 4.4 respectively; together with boundary conditions on the plate and the fluid in
§4.5. For the elastic plate we use the generalized von Kiirmin plate equations, which are
nonlinear and include buckling terms. The fluid is described by the Stokes' equations.

Before presenting the governing equations for each component of the system, we give
a derivation of the two-dimensional generalized von Kirmin plate equations, to obtain an
idea of the conditions under which they may be applied.

4.1 Derivation of the two-dimensional generalized von Kiirmdin equations

The elastic plate is assumed to be very thin compared to the typical plate dimension, hence
we derive the generalized two-dimensional von Kirmdn plate equations via asymptotics.
By 'generalized', we refer to the particular form of the equations that have extra terms for
in-plane forcings on the top and bottom of the plate: the original von K6rm~n equations
only included normal forcing (see Yu [11]).

The usual method of derivation is from force balances. For example, Fung [12] derives
the original von Kiirmiin equations and Timoshenko [13] a generalized form with in-plane
forcings on the plate (although some terms that are included in Yu and the derivation
we present are not included there). An alternative method of derivation is a variational
approach. For example, Landau and Lifschitz [14] derive the original equations and Yu the
generalized.

Ciarlet [15] gave an asymptotic derivation for the original von Kirmin equations. This
was extended by various authors, for example, Millet et al. [16], to the generalized equations.
In both cases, the authors assumed 'dead' loads: forcings that are independent of the
deformation of the plate. Here we give a very similar derivation: our scalings are slightly
different, but the expansion is essentially the same. We are also interested in forcings that
do depend on the deformation of the plate to enable the coupling of the plate and the fluid.

We first give a brief overview of non-linear elasticity, to put our asymptotics into context.
The system we are considering is shown in figure 4.

We may think of an elastic plate in two different coordinate systems. One is the unde-
formed, or Lagrangian, system in which everything is referred to the initial configuration
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of the plate. The other is the deformed, or Eulerian, system in which things are referred
to their current configuration. In two dimensions, the undeformed configuration is given by
X = (X, Z) and the deformed configuration by x (x, z) with

X = x + ý('Z), z =z + (M, Z),()

where . = (4, •) is the displacement.
The deformation gradient tensor converts between the two coordinate systems

Fi = ax /OXj.

The equation for conservation of momentum applies in the interior of the plate. From
a fluid dynamics perspective, it may be considered most naturally in the deformed config-
uration and is given by

Vx. =0, (2)

where Vx" is the divergence and o is the Cauchy stress tensor, both in the deformed coor-
dinates. Throughout the report, subscripts x and X emphasize quantities in the deformed
and undeformed configuration respectively. This equation assumes no body forces act on
the plate and that the plate is in equilibrium. In our fluid-plate interaction problem elastic
waves are fast compared to the viscous fluid flow and hence the plate at any instant may
be assumed in equilibrium.

The boundary conditions on the plate are

o-n = tx (3)

on the upper and lower surfaces of the plate, z = ±d + ((X, +d), where d is the constant
half-thickness of the plate, n is the normal to the plate and tx is the surface traction imposed
on it.

It is easier to derive the plate equations in the undeformed configuration because then
the normal is simpler and we do not have to keep track of the location of the boundary of
the plate. Although, in order to couple the plate equations with the fluid, we ultimately
convert the derived equations back into the deformed coordinate system. Using the relation
(see, for example, Antman [17] pg. 405, 406)

o, = J-IF]EF,

where E is the second Piola-Kirchoff stress tensor for the stress referred to the undeformed
configuration, and J = det F, we translate (2) and (3) into the undeformed coordinate
system as

Vx" EFT = 0, (4)

FE-N = /(1 + ý,z) 2 + (Ctx, (5)

where N is the normal in the undeformed configuration, tx is still the traction in the
deformed configuration 2 and the boundary condition is now at Z = ±d. The ",." subscript

2Note that this forcing still depends on ý. This means it should also be expanded and is something that
still needs to be cleaned up.
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refers to derivatives, a notation we use throughout the report. We introduce this notation
to avoid confusion because later we will use plain subscripts, such as Exx, to denote
components of tensors.

The stress tensor, E, may be related to the strain tensor, E, through the linear, isotropic
constitutive relation

E = 2AtE + AEkkI, (6)

where A, At are Lam6 constants and E is the non-linear strain tensor given by
1 O.9j gi 09k Ok

=i - 52 + -2+ ax, ax. (7)

Note that using a linear constitutive model but non-linear strain is consistent provided that
the strains are small (Stoker [18]).

We now look for solutions of the system (4) and (5) for which E L'/L < 1, where
L' is a length-scale associated with the out-of-plane displacements and L is a horizontal
length-scale. Setting L' = d is identical to Ciarlet [15] and Millet et al. [16]. We use the
scaling

-= L', ( - L'ý, X = LX, Z = 6L'Z, tW = j2&2t, t2 = ftatz, (8)

where 6 = d/L' and c is much less than 6 in a way made precise below. These assumptions
are consistent with the scalings suggested in our experiments of §3. Scaling the momentum
equation (4), neglecting hats, then gives

Exx + EXEYxXX + "•,zExz + - xz + TzEzz + E xz = 0 (9)

(,xExx + EExz + E-c,zExz -+ E- zz + ± (,Zzz + C•(,xExz = 0, (10)

and the boundary conditions (5) gives

E ZEXZ + ý,ZEZZ +< EXXZ = {02 on Z= (111 y0 on Z = - (I1

0Z +on Z = -1

1 + EZZ + E(,XEXZ = {E 4tz on Z = -1 (12)

Into these equations, we substitute the formal expansion,

S= O(x) + E 2 2(X) + E464(X) + .., ( = O(X) + 62( 2 (X) + E4 (4 (X) +...

where only even order terms have been included, as odd order ones are irrelevant in the
results we present.
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Expanding E in powers of e, from (7) and dropping the hats, gives

Exx = E() + c2E)+...

12=0+€2 o,x + -o,x +""*

+0 62 .(2)
Ezz

=- 1 0,z+ + 1 2 6(2,Z + I +2ZoO+,-2,z(2,Z +

for the normal strain components and

•(1)
EXZxz -E "

1 1 I 1 6
2 2 2'

for the shear strain. From these, the stresses may be written, using (6) as
(k () (k) Z(k) W, ,k) ( k) _ T(k) (• - (k)

E(k) = (A + 2A)EX + AE z l Xk = 2A- xz, ) = Z - 3xx + (A + 2A)Ezz.

We can now begin with the asymptotics.
At order 1, the equations and boundary conditions (9), (11) and (10), (12) imply

(o) 1±+ 6 1 o,z =0, 0)z + o 1o'-x= 0,

respectively. The former of these gives three possible solutions and we choose the physically
most meaningful

z(o) = (o,z = O.

Hence to leading order the out-of-plane displacement is independent of Z. The second
equation then gives

xF ( o o(X, Z) = -6(0,xz + ýO(X),

where ýo(X) may be interpreted as the in-plane displacement of the centre-line of the plate.
At order c , the equations become

E(2) -1E) = 0, (13)
xx ,X + 6 xz , z (3

subject to E(3) = 0 on Z = 1 and E(3) = At, on Z = -1 from (9) and (11), and from (10)

and (12)
E(2) = 0.

zz

This last equation may be solved for (2 to give

(2 62(OXX IZ2 _ 30xz 6 +A (2,X( •+ 2• -3-~x -•ox X-7 o,x,
A + 2A 2 O A + 2A
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where constant terms of integration have been neglected because they are not relevant in
our derivation. Equation (13) gives

(3 _/5A+2)121E( = 4(A + 2 -oxxx- +ox x Z + A(X),

where A(X) is a constant function (in Z) of integration. A(X) may be eliminated using

[E(3 )] _ -At., from the boundary conditions, to give the first of the generalized von

K~irmin equations:

s 6 + O +,xx + (o,x = tX. (14)

This equation governs the in-plane deformation of the plate. We will also require the solution
for A(X), which may be found by taking the sum ) + E(3) and is

~xzL XZ=-1

24A + 2A)
2A(X)=/Stx -po •+ xxx....

At order E , equations (10) and (12) combine to give
(0,X E(2 +E 3)Zr d' Z = -- 1() ()1 = 6 'A

J dZ C-1 + 0,XE-ZZ -- '+ Ei1

from which, provided 63 >» , the second generalized von Kirmin equation becomes

8(A +/2) 3 8(\ + A) 6 o,x(o,x + 1 (03,X + 6t.,x, (15)
3(A +2[t) A +2A 2

which governs the out-of-plane flexing of the plate. If 33 - c, then the first term, the flexural
term, should be neglected and we obtain a membrane model. The previous orders appear
to be consistent in the asymptotic expansion provided 62 >> C.

We now transform equations (14) and (15) back into the deformed coordinate system.
From (1) and the scalings (8), we have

19 aax 09
OX Ox

Hence, by replacing all derivatives in X by derivatives in x, we obtain the generalized von
K~irmin equations, on rescaling, in the deformed configuration.

We can also calculate the energy density for the elastic plate from the asymptotics. For
an elastic body, the energy density becomes

I1~ ~ j = 6 1 • (2) 1 • (2)2 i (2) (2) + ( 6
= 2 ( + 2A) EXx + Eýz xx + O(c6) (16)

= , E4 o!20, xx + O,+x + + o(r6). (17)

These equations, on rescaling, become the two-dimensional version of the energy equation
(see, for example, Landau and Lifschitz pg. 58 [14]).

188



4.2 The three-dimensional generalized von Kirmain equations

In three dimensions, the equations may be decomposed as follows.
For a displacement (•, r, (), the in-plane strains are given by

X= + -(2,,ey+7- 77, + +,x + e = (18)

from which the in-plane stresses may be obtained

2dC 2dC 2d8 19
Nx E 2 _ (exx + Veyy), IN - 1 2 (vex + eyy)I Nxy = 1 +exy1 (19)

where S =t(3A + 2A2)/(A + At) is Young's modulus, v = A/2(A + j2) is the Poisson ratio and
d is the half-thickness of the plate.

This gives the in-plane part of the generalized von K~rm6n equations as

Nx,x + Nxy,y = t., Nxy,x + Ny,y = ty (20)

and the flexural part of the generalized von Kirm~n equations is described by

BV47 = -tz + (Nx(,x + Nxy(,y),. + (Nxy(,x + Ny(,y),y + dtx,x + dty,y, (21)

where B = 2d 3&/3(1 - v2 ) is the flexural rigidity of the material, (tx, ty, t,) is the tractionV4 = (OX2 + 22

on the base of the plate and VH (• + /

4.3 Fluid equations

The fluid is assumed very viscous and so the Stokes' equations are used as the governing
equations with

/pV 2 u = Vp+pg(-sinO,0,cos9), V. u =0, (22)

where u = (u, v, w) is the fluid velocity, p pressure, /j fluid viscosity, p fluid density, g gravity
and 0 the angle of the slope of the system. The x-axis is assumed to point downslope, y
across slope and z perpendicular to the slope.

4.4 Interface conditions

At the interface between the plate and the fluid, we require continuity of velocity

-_ = -- + u. Vx• = u. (23)

It should be noted that this is the only place where there is time dependence in the governing
system of equations.

The tractions on the top of the plate are taken to be zero, and those on the bottom of
the plate are

tx =jtl" *f • fl, ty =t 2 "f fl, tz = fl " Of • fl,
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where of is the fluid stress at the plate boundary, fi is the unit normal to the (base of the)
plate and il, i 2 are the tangents to the plate aligned with x- and y-axis respectively. To as
many terms as we need in our problems, these tractions become

tX = [(u,. + w,x) - 2p(u,x - w,-)(,. - p(U,y + vX)(,y (24)

ty = [(v,z + w,y) - 2p(vy - wz)(,y - [u(u,y + v,x)(,4 (25)

tz = -p + 2pw,2 - 2.u(u,z + w,x)(,x - 2p(vz + W')X,•. (26)

4.5 Boundary conditions

The boundary conditions on the plate edges are given by fixed displacement, usually

ý = n = ( = 0 (27)

and a further condition on C, since the flexural equation (21) is fourth order. In our
problems, the edges of the plate are at y = const. and possibilities for the further boundary
condition on ( include (,, = 0, (,yy = 0, (,yyy = 0 for clamped, freely-supported or
hinged respectively. For all the problems we study, we use a clamped boundary condition

at the edges:
(,y = 0. (28)

The fluid has zero velocity on rigid surfaces.

5 The problems

In this section, we consider three problems of fluid-plate interaction. The first problem,
in §5.1, is the buckling of a compressed beam in contact with a two-dimensional very
viscous fluid below it. This is a modification of the classical, purely elastic problem of
beam buckling. It was first studied by Huang and Suo [19] using the lubrication equation
to model the fluid. The motivation for considering this problem is to understand how the
fluid modifies buckling.

The second problem, in §5.2, looks at flow in a channel down a slope. In this case there
is no pre-compression on the system and the aim is to understand under what conditions
the fluid induced shear on the plate can cause buckling.

Finally, in §5.3, we bring aspects from both of the previous problems together to try to
begin to understand the wrinkles observed in our experiments of §3.

We use linear stability analysis to analyze our problems. This allows us to find when

and where wrinkling can occur and is a relatively simple method. Linear stability analysis
is not particularly relevant to pure elasticity cases because elastic waves are fast, and so the

system quickly passes the linear growth regime. However, for a viscous fluid controlling the
growth rate of any buckling instabilities in our problems, a linear stability analysis is more
useful.

Our notation throughout is subscript 0 for base states and no subscripts for the pertur-

bation flow. Derivatives are denoted as in §4 by subscript ", .. for consistency.
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Figure 5: (a) The configuration for the buckling of a beam above a very viscous fluid. (b)

Growth rate, .(w), versus wavenumber k. Note that one mode is very close to the negative

Q(w)-axis.

5.1 Two-dimensional simple buckling

In this subsection, we examine the buckling of a pre-compressed beam in contact with a two-

dimensional very viscous fluid of depth H, as shown in figure 5(a). This problem was first

investigated by Huang and Suo [19] in the context of the manufacture of semi-conductors.

Our problem formalism is very similar to theirs, however we use the Stokes' equations for

the fluid whereas they used the lubrication equation. Our results are essentially identical

to theirs. In addition, Huang and Suo also performed a numerical simulation of the system.

For this problem, gravity is ignored and the fluid is passive.

5.1.1 Base state

In the base state, everything is assumed to be zero, except for the normal strain e,, which is

non-zero. We refer to this as pre-strain, e,_ = E0. Hence the system has a given pre-stress:

compressive if f0 < 0 and tensile if co > 0.

5.1.2 Linearized perturbation

We now add a perturbation and linearize the governing system of equations (18)-(28) about

the base state. In addition, we non-dimensionalize the equations using L = H for lengths,

U = 2dg/(1 - V2 )P for velocities, L/U for times and ptU/L for pressures. Note that the

time scale of the problem depends on the fluid. We set 6b = d/H.

The governing equations then reduce to

-,x = U,z + w,-, 3= p - 2w,z + Eo(,x,

V 2 u=Vp, V.u=0,

=,t u, (t = w on z=,

u=0 on z= 0,
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Figure 6: Configuration for channel flow. The fluid is confined by rigid walls at y -yo,
and z = 0 and an elastic plate at z = H. The fluid flows due to gravity alone.

for the plate equations, fluid equations, interface conditions and boundary conditions re-
spectively.

If we now look for solutions proportional to eikziwt, these equations reduce to

(sinh k + k cosh k + 2Q(cosh k + k sinh k) -k 2 sinh k - 2Qk2 cosh k

det 1 2 k2 + 1 sinhk 13k2 + co (sinhk - kcoshk) 0,

6b -(sinhk + k cosh k) + 2Q cosh k +6bk 2 sinh k + 2Q(cosh k - k sinhk)

where Q = -iw/k, to give the dispersion relation. Figure 5(b) shows the two solution
branches for Q(w) against k, for the specific choice of parameters Co = -0.0156, 6 b = 0.075.
As can be seen, one root is negative for all k and hence the perturbation is stable, whereas
the other is positive for small k, and hence the perturbation is unstable. The short-wave
cut-off occurs at 62k 2/3 + Eo = 0 and is due to flexural rigidity preventing shorter waves.

The main contribution of the fluid is setting the time-scale: its presence reduces the rate
at which the instability grows, because it only slowly flows out of the way of the buckling
plate (Huang and Suo).

5.2 Channel flow

In this subsection we examine the flow of a very viscous fluid in a channel of half-width Yo,
down a slope of angle 0. The side walls and base of the channel are rigid and the top, at
z = H, is an elastic plate, clamped at its edges across the slope. The fluid flow is due only
to gravity: there is no imposed pressure gradient. It is assumed that the volume flux of
fluid is exactly sufficient to keep the elastic plate flat in its base state. This configuration
is shown in figure 6.

This is closely related to a much studied classical problem in elasticity: a thin plate in
shear (see, for example, Wong and Pellegrino [20]). In this case the configuration is a plate
whose long edges are attached to rigid rods held a fixed distance apart, so that the plate is
just taut. One of the rods is then translated parallel to its length. Wrinkles are observed
between the rods, at 450, regardless of the amplitude of the displacement of the rod. This
is a result of the Poisson effect: although the plate is under tension in the direction of the
major principal stress, it is in compression in the direction of minor principal stress with the
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result that buckling occurs. This problem has been approached in a variety of ways. The
original method was using tension field theory, see for example Mansfield [21], which was
able to predict the 450 angle of the wrinkle. 3 More recently, Wong and Pellegrino [22] found
simple analytic predictions using an assumed form for the out-of-plane displacement and
force or energy minimization arguments. In addition, experiments and many finite element
computations have been performed (see, for example Wong and Pellegrino [20]).

The aim of this section is to show that, in our problem, the traction of the fluid on the
bottom of the elastic plate, results in a similar buckling phenomenon.

5.2.1 Base flow

For the base state, we assume that the fluid flow is purely down-slope with v0 = wo = 0.
We assume that the plate is not displaced in the cross-slope direction, so 770 = 0, and that
it suffers no out-of-plane displacement, hence ( = H. The system is assumed independent
of the downslope coordinate, x, and time, t. Hence we take

U = uo(, z), = pO(y), = Po(z).

The governing equations for the fluid (22) in the base state become

p(uo,yy + uo,zz) = -pg sin O, 0 = Po,z + pg cos 0, (29)

with boundary conditions

uO = 0 on z = 0, H; y = ±yo. (30)

This system is identical to that for flow in a rigid rectangular duct: the fact that the upper
surface is elastic is immaterial (except for the pressure being known at the upper surface,
see below).

The in-plane deformation equations for the plate (20) reduce to

1 + 'yy = IUO,z, (31)

with boundary condition ýO = 0 at y = ±yo. The flexure equation (21) reduces to P0 = 0

on z = H, completing the pressure equation (29b).
Using Fourier series for uo, this system can be solved giving

po = pg cos 0 (H - z), (32)

uo = pg sin 0 H 2 /pA U(Y, Z; a), (33)

60 = y~pgsinO H(1 + v)/dE E(Y; a), (34)

where Y = y/yo, Z = z/H, a = H/yo and

16 (-1)m sin[(2n + 1)wZ] cos[(2m + 1)7Y/2]
U74 E (2n+ 1)(2m + 1)[(2n + 1)2 + a 2(2mn+ 1)2/4]'

64 (-1)m cos[(2m + 1)7rY/2]
75 E (2mn + 1)3[(2n + 1)2 + a2(2m + 1)2/4].

n,m=O

3 Unfortunately, we cannot use tension field theory, as it relies on the existence of an Airy stress function:

one no longer exists for the generalized von Kirmin equations.
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Figure 7: (a) Velocity profile, U, against Y = y/yo and Z = z/H and (b) downstream

displacement of the plate, E, against Y for a = 0.25.

Plots of solutions for U and E are shown in figure 7 for a = 0.25. As can be clearly
seen, the fluid pulls the plate downstream.

To be compatible with the scalings assumed to obtain the generalized von K6rmin plate
equations, we must be in a regime in which the displacement is small. For this we use the

strict scaling d d2 /L and hence we require

(d 3  3 -1.3(35)

pg sin 0 Hy3

5.2.2 Linearized perturbation

We now add a small perturbation to the base state and consider the linearized equations
governing the system.

The linearized perturbation equations for the plate then become
2d E 

d S

T2d (&,Xx + v",XY) + I-+V(•,yy + 77XY) = [UOzz( - /-uo'Yy + A(u'z + w,X), (36)

d __ 

2d$~( 

7

S (+'Xy + r7'yy) + 1 ---2-(v/'XY + 77,yy) = -1Uo,y(•x + /,(v,z + Wy), (37)

for the in-plane deformation equations (20) and

BV4H¢ Po,z¢ + 2/uo,zx + p - 2pw,, + 2_dE 60oY(, + -,

H I +i V 0,y y(x +1

+ d[-.U0,yc,•Y + PO,zz(•x + /-t(u,xz + w,xx) - puo,y(,x - po,yxy + [(v,yz + w,yy)], (38)

for the flexural equation (21). The boundary conditions for the plate, from (27) and (28),

S=7z (y = 0 at y = ±yo. (39)

The linearized perturbation equations for the fluid, from (22), become

[,V 2 u = PX, fV 2v =p,y, /iV 2 w = P'z, U,X + V,y + Wz = 0, (40)
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with boundary conditions

u=v=w=0 onz=0; y= ±yo. (41)

The condition of continuity of velocity at the interface (23) becomes

ý,t + V6o,y = U + Uo,z,( 77,t = v, Ct = w. (42)

These equations appear fairly complex, however we can make some significant simplifi-
cations by neglecting terms which are order d/L smaller than the leading order terms (in
fact, we must do this as it not consistent to keep them). Here L is the horizontal length scale
for the perturbation, assumed to satisfy L <K yo. We scale according to (8) in the deriva-
tion and bear in mind the different length-scale for the base state. We also scale vertical
derivatives with L as we would like vertical and horizontal length scales to be similar. We
then have from tz - 6d4/L 4 in (8), as E - p, that p - 9d 4 /L 4, from which u - 9/-t d4/L 3

using (40). Substituting these into (36)-(38) and (42) we obtain the reduced system

M E d 9
_2 ( + "7,-Y) + 1 - (,y + 77,xy) = IPUo,zzC, ()

d$ 2d$

1 V .(ýXy + r±,yy) + 1_- • (2 (,y + r7,yy) = 0 (44)

for the in-plane equations,
di diB,4= Po,z( + 2/uuo,z(,x + p - 2[tw,z + 21-- ,yCxy + d9 ,yyCx (45)

for the flexural equation and

0=u+uo,z(, 0=v, (,t=w onz=H (46)

for the interface conditions. The fluid remains as in (40) and boundary conditions remain
(39) and (41).

To gain an understanding of the instability, we look for small wavelength solutions
and we assume the background variation is slow in comparison. This allows us to Fourier
decompose the perturbation in both the x- and the y-direction. Ultimately, this could be
made rigorous using WKB.

Therefore we assume the perturbation is proportional to eikx+ily-iwt and we ignore
cross-stream boundary conditions.

Solving (40) subject to u = v = w = 0 on z = 0, and (46) on z = H, we obtain

21uKiw cosh KH sinh KH + KH 21LikK 2H 2

p - Wz = 2sinh 2 KH - K 2 H 2  • + UOzsinh2 KH - K 2HF2

where K 2 = k2 + 12. Hence (45) becomes
cosh KH sinh KH + KH sinh2 KH

BK4•= -p sin0 • 21•iaJ • . ... + 21 uikuo0
sinh2 KH - K 2 H 2  sinh2 KH - K 2H 2

2di di1 + oykl( + -- ik•°'yy'.
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V

Figure 8: Cartoon (plan view) of the observed instability for the channel flow. The angled
lines represent wrinkle crests. The interior area is wrinkle free.

This relation only depends on ( and hence the dispersion relation becomes
_KCOSh KH sinh KH +KH.

-2,,K sinh2 KH - K 2H2  iw = -BK 4 - Pg cos 0
y3s sin2 KH - K2H2

-2yopgsinO H E'(Y; )kl + ik 3sinh2 KH - K 2H 2 pgsin0 HE"(Y;a), (47)

using (31) and (34).
From the dispersion relation some of the properties of the instability may be deduced.

We consider Qý(w), and note that the coefficient of iw is positive for all (k, 1). The first
two terms on the right hand side of (47) result from the flexural term and hydrostatic
pressure. Both are always negative and hence stabilizing. The third term results from the
base displacement of the plate due to fluid traction on the base and can be destabilizing.
A necessary condition for instability is klWE(Y; a) < 0. Hence any observed crests will be
oriented downstream, as shown in figure 8. In the interior E' = 0 and close by it is too small
to overcome the stabilizing flexural and hydrostatic pressure terms. Hence, in an interior
region, no wrinkles are observed. The final term of (47) is imaginary and hence not directly
important to the stability.

Finally, if we look at a fastest growing mode, then the observed modes have k = ±1.
This suggests that even for a small displacement due to fluid traction, the wrinkles will
have a significant angle.

There is much that needs to be done to complete this analysis, and check for its consis-
tency with scalings.

5.3 Rivulet flow

In this subsection we study the flow of a very viscous fluid, contained between a rigid base
and an elastic plate clamped to the base along lines y = +yo. This configuration is shown
in figure 9. It is close to the physical situation we wish to model and is equivalent to our
experiments of §3. In this scenario, there is a combination of pre-strain, as in §5.1, and
fluid traction on the base of the plate, as in §5.2, to produce buckling; bringing together
the features of the previous two problems.

First consider the elastic plate in the absence of the fluid. It has approximate unstressed
length 2(1 - fo)yo, or equivalently a pre-strain eyy = E0, where Io0I <K 1. If co > 0, then the
plate is in tension and is flat against the base. If EO < 0, then the plate is in compression
and will buckle. Hence this pre-compression may be conceptualized as slack.
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Figure 9: Configuration for the rivulet problem. An elastic plate is clamped to a rigid base
along lines y = ±yo and fluid is introduced into the gap between.

If fluid is now introduced between the rigid base and the taut plate for e0 > 0, then it
forces the plate out of the plane of the base, and increases the tension on it, and no instability
is found. For co < 0, the situation is more complex. If sufficient fluid is introduced, then
the increased out-of-plane displacement is sufficient for the plate to be taut. However, if a
small volume of fluid is introduced, some compressive sress may remain and the plate still
buckles. In any case, the plate is forced out of the plane of the base by the fluid, stretched
across stream to accommodate the fluid and pulled downstream by the fluid.

5.3.1 Base flow

We use the governing system of equations (18)-(28), non-dimensionalizing the variables by
yo for lengths, pg cos 0 yo for pressures and elastic stresses and pg sin 0 y•/I for velocities. We
also set (- = 2d&/(1 - v 2)pg cos 0 y2, representing a ratio of elastic stress to fluid pressure,
and put 6r = d/yo.

The base state is assumed independent of down-stream coordinate, x, and vo = W*o = 0
is assumed.

The in-plane plate equations (20) reduce to
1 1 2

(1 - V)(rEO,yy = Uo,z - UO'y(,y, Er Eo + 17o,y + 1 ,y = const. = (!rN0, (48)

where CO is the imposed pre-strain and the dependent variable No may be interpreted as the
remaining pre-stress. Note that, unlike in Euler's elastica problem, the stress is a dependent
variable whereas the displacement is a parameter. The flexure equation (21) becomes

-32 r•,Oyyyy = P0 + '-rNo~o,yy, (49)

3rT

and the boundary conditions on the plate are

6 = 770 = (0 = (,y = 0 at y = ±1. (50)

The fluid equations (22) become

U0,yy + Uo,zz = 1 (51)
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for the downstream flow and
P0 = PO - z (52)

for hydrostatic pressure, where PO is a constant of integration. The boundary conditions on
the plate are

uO = 0 on z = 0, Co(y). (53)

The final condition on the system is constant imposed volume flux 4

_1 Q =yuo(y', z) dz dy', (54)

where the flux has been non-dimensionalized by pg sin 0 yo/6y.
Equation (51) subject to the boundary condition (53) is a complex system to solve, more

so as the solution for (o depends on condition (54). However, in view of the scalings (8)
used to obtain the von K6rmin equations, the vertical length-scale for the fluid must be
much less than the horizontal. Hence a lubrication-like approximation may be made and
(51) replaced by

O,z -1,

with solution satisfying (53) given by

U = z[K0( - Z].

Condition (54) thus becomes

Q:=j ((y) dy. (55)

We now look at solutions for the governing system of equations (48)-(53) and (55). First
we consider the solution for Co. Substituting (52) into (49) and solving for (o subject to the
boundary conditions (50c,d) we obtain

@(Y)=/0 -=m2 sinhm2 coshm l y +-im lsinh ml coshm 2Y+1 , (56)

M2 sinh m2 cosh 77-i1 - m1 sinh mr cosh m2

where

(FNo ± E2

3
M1t,2 2 2

The behaviour of this solution depends on the sign and magnitude of ErNo. For '!rNo <
- /45r/3, nmi are purely imaginary, and the hyperbolic cosine terms in (56) become
cosines, giving an oscillating solution for (. For (rN0 > / 3rr/3, mi are real and the
solution consists of hyperbolic cosine terms, and lacks oscillations. For I[rN0l < V4rr/3,

4 1f the system were on a flat base, then this final condition would be a fixed volume constraint

V - j o(y) dy.

The analysis for this case is similar to that presented for the fixed flux. It is also related to work by Riera
and Mahadevan [23] on the drying of sessile drops.
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the solution for (0, (56), becomes a sum of products of hyperbolic cosines and cosines. Note
that, regardless of the value of ErN 0 , the form in (56) is real.5

No and PO are still unknowns that must be specified. If we assume No is known, then
Po may be found from (55) to give

PO == Q M ((o/o)3 dy (57)

This eliminates the singularity in the denominator of (o in (56) at mi tanh m, = m 2 tanh m2,

however it introduces a new one where f l ((O/pO)3 dy = 0.

Finally, No may be found by solving (48b) for qo. Subject to boundary condition (50b),
the solution is

?7O = 4 + (02,y dy - - (0,y, dy,

from which we obtain

N = o+ (02,y dy. (58)

Hence we may treat the problem as an inverse one: we fix the dependent variable No,
which provides the full solution for (0, and calculate the imposed parameter co as a function
of No using (58).

We may write this relation

(1/ 2 Q)2/3 fL ((m115o)2 dy
(rE0o = No - 2/3f 'I (0,y /50) 3 dy

Hence note that by scaling the parameters, e0, Q and 6, and the dependent variables, No,
PO and (o, appropriately, we eliminate explicit dependence on the parameter (E.

Figure 10(a) shows a contour plot of the scaled pre-strain, (FrE0, against (ErNo and

the scaled volume flux, (F/2 Q. For a given (r60 < 0, and a given value of (9/ 2Q, there
are multiple possible values of CrN0. The system has non-unique solutions: a feature of
buckling.

Figure 10(b) shows the full set of solutions for the choice of parameters -3/2Q = 1 and

(rE0 = -3. Solutions which go below the y-axis are physically not allowed, however there
still remain several valid solutions. The green curve (plotted with Co(-1) = 4.5) is the
solution we choose for the system, based on an energy minimization argument, as discussed
below.

There are some other notable features of the plot. The solid, black vertical lines satisfy

j ( 0p/o0)3 dy = 0, (59)

5 There are a couple of other points to note. Firstly, the form of the solution (56) is single-valued although

this is not necessarily physically correct. Secondly, if 6r becomes too small, then the flexural term should be
neglected from the plate equations (21). Note also, that if there are too many wiggles, then the assumption
that the horizontal length-scale for the plate is much larger than the vertical also fails.
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Figure 10: (a) Contours of the imposed parameter (ýco against the dependent variable ErN0
3/2

and parameter (r/ Q. For a given value of QrEo there corresponds a contour. Then, for a

given value of E3/ 2 Q there are multiple possible values of •rN0, and hence multiple possible

solutions for (o. The solid and dashed vertical lines satisfy (59) and (60) respectively. (b)

Solutions of (o for the choice of parameters Er/2Q = 1 and rEEO = -3. The lowest solution
corresponds to the smallest solution for •rNo, and higher up solutions correspond to larger
values of ErNo. The green curve (plotted with (o(-1) 4.5) is the curve chosen on the
basis of minimum energy.
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Figure 11: (a) Contours of plot of energy against FrNO and F3/ 2 Q together with the con-

tour •r0o = -3. The solid and dashed lines again satisfy (59) and (60) respectively. (b)

Solutions of qO for the choice of parameters F3/2Q = I and rEO = -3. The lowest solution
corresponds to the smallest solution for QrN0, and higher up solutions correspond to larger
values of eFN0. The green curve is the curve chosen on the basis of minimum energy.
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or equivalently are where PO is infinite from (57). Across these lines, the solution (0 is
reflected in the y-axis. The dashed black lines satisfy

I tanh mnl 1 tanh m2 (60)

ml M2

and occur when Co,yy/po = 0 at y = ±1. In regions with solid lines to the left and dashed

lines to the right, (O,yy < 0 at y = ±1 and in regions with dashed lines to the left and solid
lines to the right, (o,yy > 0 at y = +1. Hence only the latter are physically acceptable. At
dashed lines, as (N 0 increases, two extra down-wiggles are created. At the next solid line,
the shape is reflected so the down-wiggles become up-wiggles. Hence, beginning with one
up-wiggle and zero down-wiggles in the right-most finger of figure 10(a), there is one more
up-wiggle in each finger to the left.

The choice of solution for a given set of parameters must still be made. We select the
minimum energy solution.

The total energy of the system is divided into two parts: the internal (stretching and
bending) energy of the elastic plate and the potential energy of the fluid. The two compo-
nents of the plate energy per unit area are given by (16)

Obending r 5 r 0rO'yy stretching : -(I _ V)

respectively, where the energies have been non-dimensionalized by pg cos 0 yo/2. The po-
tential energy of the fluid per unit area is

Opotential = -i2.

For zero Reynolds' number flows, the kinetic energy is negligible. Hence the total energy
per unit length becomes

(r~ltotal = 3r2E f Er ,yy dy + 2((rN0) 2 + (1 - v) j r dy+ ( dy.

Note that this expression again has no explicit dependence on (r. 3a/2r
Figure 11(a), shows a plot of energy contours against iý,No and -Er Q, together with the

contour rEO = -3. In this case, the solution with minimum energy is seen to correspond
to the one with least wiggles. This is because there is little compressive stress remaining in
this case. This analysis is perhaps not quite correct Though: the cross-stream displacement
77o is shown in figure 11(b) and it is seen to increase as the number of wiggles decreases. It
might have been expected that more wiggles would be preferable so that the plate fits more
easily over a given volume of fluid.

5.3.2 Linearized perturbation

We now consider the stability of this base state to small perturbations. The linearized

perturbation equations for the plate are
2dg d
1 -2 (•'X + V177,xy + VCO,y(,Xy) + -- (6,yy + r7,•y + (O,yy(,x + (O,y(,xy) = IUO,zz(1

dS 2dS

1+v (6,xy + 77,yy + o,y(Ixx) + 1.---2 (-(,xy + '7,yy + (O,yy(,y + O,vY(,yy) = 0
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for the in-plane plate equations (20) and

V4 d9

BVt = po,z¢ + 2ituo,z,x +p - 2 w, ± +pgcosoy'No(v¢,x + ¢,y) +2
0 + ý0,Y(zXy

2d$ d d£
+ 1 -2(oYY (*,X + ?7,y + +OYY) 1+ I• oy

for the flexural equation (21), with boundary conditions (27) and (28)

ý = q = ( = (,y = 0 at y = ±yo.

The linearized perturbation equations for the fluid (22) are

btV 2u = P,., -7V = P,y, [,,2W = P,z, U," + V,y + W,z = 0,

with boundary conditions

u=v=w=0 on z=0; y= yo.

Finally, the linearized interface conditions (23) are

O=u+uo,z(, O=v, (,t=w onz=H.

We set Lp < (0(0) and Lp < yo to be the out-of-plane and in-plane length-scales of the
perturbation repectively. Then we have neglected terms that are O(Lp/Lp), smaller than
the leading order terms in each of these equations, as in §5.2.2.

Assuming perturbations are small wavelength and background variation of the base state
is slow, we substitute solutions proportional to eikx+ily-iwt into the above equations and
derive a dispersion relation with real part

2pK cosh K( 0 sinh K( 0 + K( 0 Q(w) = -BK 4 _ pg COS 0
sinh 2 K@o - K 2 (2 (

- pgcosOy No(vk2 + 1)2 )-2dyy[(1 -- )k 2 + 212],01 + V K 2 (1 - V2)k 22]

where K 2 = k2 + 12.

This has similar properties to the displacement relation (47) of §5.2.2. The first two
terms arise from the flexural and hydrostatic terms respectively and are stabilizing. The
third term arises from 'remaining' slack in the system, and can be destabilizing provided
the solution for No in the base state is negative. If No is sufficiently large and positive
(the system is very taut), then it may eliminate all instability. As in §5.2.2, the base state
downstream stretching can be destabilizing and is responsible for symmetry breaking. Much
more work must be done to complete this analysis.

6 Conclusions and future work

We have presented some preliminary analysis on an elastic-skinned gravity current and the
wrinkling phenomenon that may be observed, under certain conditions, on the surface. This
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wrinkling is most prominent due to a combination of a compressive pre-strain on the plate

and fluid traction pulling at the base of the plate. The pulling is what is responsible for

symmetry breaking. We have tried to remain consistent with the scalings under which the

von K6rm=n plate equations hold. Some experimental observations have been explained

from our analysis: the necessity of slack for wrinkles to be observed and the downstream

orientation of the wrinkles.
There is still very much that can be done. The stability analyses can be completed in

a WKB sense and can be considered numerically. Beyond that, quantitative experiments

and numerical simulations using finite elements could be performed. Formulating boundary

conditions for real elastic-skinned gravity currents should also be done.
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High-order Boussinesq models for internal interfacial waves

Yaron Toledo

Technion - Israel Institute of Technology

1 Introduction

The irrotational flow of an incompressible homogenous inviscid fluid is generally a three-
dimensional problem. The main issue of Boussinesq-type equations is to reduce the descrip-
tion to a two-dimensional one by introducing a polynomial approximation to the vertical
distribution of the flow into integral conservation laws, while accounting for non-hydrostatic
effects due to the vertical acceleration of water. After solving the two-dimensional problem
we can easily find the flow properties everywhere in the three-dimensional domain using
the polynomial approximation. In this work we apply this method to the flow of internal
interfacial waves between two incompressible fluids. In the first part of the work (sections 2
and 3) both fluids are homogeneous and the flow is irrotational either with a rigid-lid or a
free surface. In the second part (section 4) the fluids are both exponentially stratified and
the flow is irrotational with a rigid-lid (a similar problem with a free surface could be solved
as well by using the same techniques). In the third part of the work (section 5) the method
is applied to the rotational flow, which is presented by the surface quasi-geostrophic model.
Finally, in the last part of the work (section 6) a new layered model based on the sur-
face quasi-geostrophic model is constructed and its dimension is reduced by the Boussinesq
method.

2 Internal interfacial waves between two unstratified layers
with a rigid-lid

2.1 An infinite series solution for the Laplace equation in each layer over
a horizontal bottom

The equations governing the irrotational flow of an incompressible inviscid fluid in the lower
layer over a horizontal bottom are:
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V24)(1) +-4-(1)lz 0 -hi < z < 77(1

?It + V 4)(1) V'1 - 4) 1) =0 Z = 7 (2)

(1) (+! ) 2 ! + z) 2 P
S 2 2 zPi

ZI•) z =-hl (4)

The equations governing the irrotational flow of an incompressible inviscid fluid in the upper
layer under a rigid lid are:

V 2 .( 2) + )(z2 ) 0 < z < h 2  (5)

qt + V 2 )V 1,-4]2) =0 z =r (6)
)(2)+ V (2) 2 D(2) _ _P =0 z=7 (7)

t 2 2 P2
4(2) 0 z=h 2  (8)

By the use of (2), (3), (6), and (7) we can construct two interface conditions on z =7:

P1) ~+' 1 (D 21+ (D~() 2 (2) +IV4 2 2+1 4)(2) 2 (9

2 Z +gi =P2 4+½ ( +½ +g77 (9)

(+ (1) - -I(2) 1 V-7 + (10)

Here 4I) is the velocity potential, h1and h2 are the water depths of the two layers, P is the
pressure and 77 the interface elevation. The horizontal gradient operator relates (D to the
horizontal velocity, u:

V - , 57 , u= (u,v). (11)

For convenience we denote (D = W and use the hat (^) and tilde (-) signs to denote the
value on z = 0 and on z = q respectively.

One of the main ideas of Boussinesq-type theories is to reduce the three-dimensional
description to a two-dimensional one. The first step towards such a reduction is to introduce
an expansion of the velocity potential as a power of series in the vertical coordinates:

00
4)(Xy,zY,) Z0 = E Zn 0.(X Yt)" (12)

n=0

By substituting this expansion into (1) we find

4 ( , =) z- v12no(0) + V 4~ (13)
n=O - l (2n)! (2n + 1)!

This is a series solution with two unknown functions (1) and 0(i). Note that the velocities
in layer 1 at the undisturbed interface are given by
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Now by the use of (13) and (14) the horizontal bottom condition (4) can be expressed as

L, W() + L,* {V,(1) 0 (15)

with

00 0,02n 00 (16)
= Z()n (2)!- V2n Ls, = 1(_) h 2 n+l V2n+ (16)

n=O n=O

where V is the gradient operator when applied to a scalar, and the divergence when applied
to a vector. This equation defines a relation between WO1 ) and 4)(1) which is of infinite order
in hV. The series are convergent if ((1) has a Fourier transform, since they correspond to
the analytic functions sinh(kh) and cosh(kh) where ik is the Fourier symbol of V.

Following Rayleigh (1876) , we may use symbolic notation of Taylor series operators by
which (16) can be given in the compact form

L, = cos(hlV), L, = sin(hlV) (17)

so that (15) becomes

cos(hlV)W( 1 ) + sin(hlV)V4)(1) = 0 (18)

and (13) and its z derivative become

(1)(x, y, z, t) = cos(zV) (1) + sin(zV) W(), (19)

W(1)(x, y, z, t) -sin(zV)Vd1( 1 ) + cos(zV)W(1). (20)

Using (18) we can easily construct a Dirichlet to Neumann relation

M -tan(hjV)V41( 1 ) @z = 0 (21)

and define its operator as

G - tan(hiV)V. (22)

By applying the same techniques we can construct a similar Dirichlet to Neumann relation

for the second layer

1V(2) = tan(h2 V)V.( 2) @Z = 0 (23)
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2.2 Constructing the accurate equations for the linear problem

For small amplitude waves in the sense that the ration between the amplitude to the wave
length (wave slope) is small the problem becomes linear. We can see that the kinematic
and dynamic interface conditions (10) and (9) become

WVV() = W(2) @z = 0 (24)

pl +I = P2 4(2) + ©z = 0 (25)

By the use of (21), (23) and (24) we can construct a relation between 4(1) and 4)(2)

)(2) = tan(hV)_•(1) (Q -z 0. (26)
tan(h 2 V)

Let us define this operator as

tan(h]V) (27)G2 = tan(h2V)"

By using the linear version of (2), (26), (27) and the derivative of (25) with respect to time
we get

(P1 - p2 G 2 ) •)l) (P2 - Pl) 9v•( 1) @z = 0 (28)

By the use of (21) and (22) equation (28) becomes

(PI - p 2 G2 ) ý) =(P2 - pi) gGI1) z = 0 (29)

By substituting the linear relations V = ik and a = iw and the definitions of the differential
operators (22) and (27) into (29) we get

2 = (P1 - P2 ) gtanh (khl) tanh (kh 2) (30)

P, tanh (kh 2) + P2 tanh (khl)

We can see that equation (30) is exactly the well known linear dispersion relation for this
problem.

2.3 Constructing approximate equations for the linear problem

One way to use the above equations for solving a general wave problem is by using Fourier
and Laplace transforms with the exact linear dispersion (30). A solution using that method
have two downsides. The first is the difficulty of computing its integrals and the other
downside is that this type of linear solution doesn't help us construct the solution of the
nonlinear problem.
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We introduce here another method for solving the linear problem. In this method we
first need to approximate the infinite differential operators (22) and (27) to finite operators.
The accuracy of this solution will relate to the accuracy of the approximations that are
used. The simplest way of doing that is by truncating the Taylor series representing these
operators. The higher the order of derivatives kept in the Taylor expansions the higher the
accuracy. But, there is a better way of approximating these operators.

Pad6 approximation approximates these operators by a ratio of two power series. It has
double the accuracy of the Taylor approximation, while using the same order of derivatives.
For clarity we give both the Taylor and the Pad6 approximations. Taylor (2) represents the
Taylor approximation up to the order of V2 (including) and Pad6 (2,2) represents the Pad6
approximation up to the order of V2 both in the numerator and the denominator.

Note that the two operators being approximated here are even operators. Therefore,
for the Taylor approximation the lowest order term neglected is actually of 0 V4 and for
the Pad6 approximation it is of 0 V8

The Taylor and Pad6 approximations for relation (21) are

W(1) = -h 1V 2 ,( 1) Taylor (2) (31)

1 - g v•h22 W1 ) = -h 1 V 2 4( 1) Pad6 (2,2). (32)

The Taylor and Pad6 approximations for the coupling relation (26) are

ý(2) = _hi- h2 
-

2 V2 4)(1)2 3 1 2 Taylor (2) (33)

15 - 6h + h2 V2 V(2) hi 15- h2 + 6h 2 V 2 4(1) Pad6 (2,2) (34)

Now we can use the Taylor (2) approximations to construct an approximated version of
equation (29) by using the (31), (33) and the derivative of (25) with respect to time

(plh2 + P2hl) + ±3P2hl hi2 - h2 V2  ) = (P1 - P2) hih 2gV 24( 1) (35)

and by using the Pad6 (2,2) approximations (32) and (34) we can construct in the same
manner the following equation

p h2 -p 2 hi 15- h2 +6h2 V 2  8U) (p2- pi)gh2 15- 6h2 + h2 V2 VW(1).(36)

Notice that we are not substituting equation (32) into (36) because by doing so the order of
differentiation will increase resulting in a more complicated method. Therefore, we should
first use (32) for computing 1W1) and then only then substitute WM1) into (36) and solve
for 4(1).
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2.4 Constructing approximate equations for the nonlinear Dirichlet to
Neumann problem

From the Laplace equation (1) we can replace horizontal by vertical differentiation to obtain
for layer 1

a=2m•(1)

Now we look for 4(1) of the form

00

4 (1)(x,y, z,t) = Z(z + h±)•¢()(x, y,t). (38)
n=O

From (38) it follows that

am'j(
1 ) 00

z(m - (n= - i)!n (z + hi)nm¢)(x, y,t) (39)
n=0 n )

By substituting (38) into the Laplace equation (1) and collecting equal powers of z we obtain
a recursive relation

(1) V2_ _ )
On+2= (n+1)(n+2)" (40)

On the horizontal bottom, boundary condition (4) leads to

(1) =0. (41)

This implies from (40) that all n)'s with odd n vanish
(•1) --- (1~) --- 0(1) =..... 0. ( 2

01 03 -5 (42)

Now by the use of (38), (37) and (39) we can write (P), V24(1), W(1) and V2w(V), which
relate to the properties of the flow on z = 0 as

3 3•(1) --- E h2n'(1)l W'n •(1) -. ,Z/12n-14(1)Q

n=O n-O

E (27-0! h2n _E (2n)! h2n,(l) (43)
- T(2i7 -2)! h 1 wn =- (2n - 3)! ' (24

Notice that (38) was truncated to use only 4 base functions. This enables us to solve for
them using the 4 equations written in (43). Had we wanted to use more base functions
for higher accuracy, we would have needed to increase the number of equations by adding
equations for higher order of differentiation to equation set (43). By solving equation set
(43) for the base functions (1) n = 0..3 in terms of 4(1) and WM1 ) and their second
horizontal derivatives we get
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(1) -1 _9h1V 2'(') + h13V 2Wf(1) - 33h1 C1V() + 484)(1)
48

(1) 16 7V 2 ý(1 ) - h1 V 2 1W(I) + 1•1

0(1) _1 -5_V2,(I) + 1V2w(1) _ 5 W(1) 4
16 hh 2 i h (44)

0(1) 1 3 V2,(1) 12W(1) + 3 W(1)

Using the solution (44) in (38) on z =,q we get a relation involving ý(8), •7 1) and 4)(1):

73 q+2h 37 2 7+2h2 2 72 2
(1) - 7 I + + 2h, v + 7 + 2h- 77 + 27 - 2h1 V24(1)

48hl3 16h4

16h071 + 10h277
4 + 6hr/5 + 776VW() + (45)

16h5

Equations (15) and (45) are two equations for V(0) and W(l). We can solve for •(() and
W(1)using a numerical method such as finite differences. The set of equation will have the
form

A'pad6 -Bý-a0d6 (46)
A(') B1 ) WM(1 Vi) (461)

H pad( padB are the finite difference matrices representing the Dirichlet to Neu-

mann relation (32), ('i) and B(') are the finite difference matrices representing the relation
between the undisturbed potential and vertical velocity and the potential on the interfa-
cial wave. Now by using 4)(1) and W1M we can find the base functions and from the base
functions we can find the properties of the flow at every point in the layer.

Now let us present a way to calculate the properties of the flow in the upper layer. We
can easily find W(2) using (10). Applying the same technique described in subsection 2.1
we can construct an equivalent version of equations (19) and (20) for the upper layer

4(2)(XYZ't) cos(zV) ý( 2) + sinl(zV)W( 2 ), (47)

W(2) (x, y, z, t) -sin(zV)Vd( 2) + cos(zV)W( 2). (48)

On z = 77we can use equations (47) and (48) to solve ý(2) and 1W7(2) and substitute the
solution into (47) and (48) to get 1(2) and W(2) at every point in the layer.

2.5 Constructing the equations for the nonlinear time marching

An analytical relation between (W) and i(2) must be developed in order to enable marching
• in time using the dynamical interface boundary condition (9). By applying the solution
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(44) to the z derivative of (38) on z = i7 we get a second relation between -(0) and VV(1)with
respect to W1 1). By using this relation, equation (45) and equation (15) we can eliminate
•() and V1V(1) and obtain an analytical Dirichlet to Neumann relation on the interfacial wave

1 - 172 + 7]hl 2  - (7) + hi) V 2wT(1) Taylor (2) (49)

1 2 h 3 2 V2 1() h1)v 2 1 1  Pad6 (2,2) (50)1- •17 +17ih+h =-7

A similar relation can be constructed for the second layer

1 - 1972 _ 97h2 V2  (2)= - (n - h2 ) V 2WV( 2 ) Taylor (2) (51)

1- 2 -_ h2 + V2  (2)= - (7] - h2 ) V2V(2) Pad6 (2,2) (52)

Now by substituting equations (49) and (51) into the kinematic interface boundary condition
(10) we get a relation between 4(1) and ý (2) for Taylor (2) approximation

(7] - h 2 ) 1 - V 2 
7 V - 1 772 + q7 hl + 2V 2

17 V2 ](i)
2

(7r + hi ) 1 - V27V - 1 772 - 7h 2 + 2V2 v 2  (2) (53)
2

deriving this relation with respect to time yields a relation between 0) and •(2)
'1Žt

For Taylor (2) approximation

(--h2) 1- V 2 ?/V -- 17/2 __?hl2V 2 77 V 2 VOl'_±

-?I/t + V3?/t (7) - h 2 ) + V 3
17 1?t V 4(1)

+ 2V 3 ?It (?/ - h2 ) + 2V 2 77 + 3772 _ h2 7 - hi (-277 ± h 2) (1)

( hi) I- V2
7V- 2 2 - 7 1h2 +2V 2 ,i V2 4)2)+

-77t + V3,qt (77 + hi) + V•3717)t V 4)(2) +

2V 3
77t (77 + hi) + 2V 2

77 + ý712 + hir7 - h2 (277 + hi) qit V24i 2 (54)

which together with the dynamical interface boundary condition (9) enable us to solve for

t• () and ý2) and then propagate them in time. The above derivatives should be handle
with care because •(P) and 4(2) are located on the interfacial wave, which means that in
each location they are located on a different elevation (qj). The horizontal derivatives can
be locally related to the tangential (V - i) derivatives, the elevation (71) and the vertical
derivatives WO() and 1j7( 2 ) using this relation

I(1, V77)1 I(1, v71 )1 (55)
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3 Internal interfacial waves between two unstratified layers
with a free surface

3.1 An infinite series expansion for ( in each layer over a horizontal
bottom

The equations governing the irrotational flow of an incompressible inviscid fluid in the lower
layer over a horizontal bottom are shown in equations (1)-(4). The equations governing the
irrotational flow of an incompressible inviscid fluid in the second layer under a free surface
boundary condition are:

V 2 (p(2) + 1 (z2z) =- 0 77 < z < h2 (56)
q, + V•(2)Vq _ 4(z2) = 0 Z = 77 (57)

)(2)+1 V (2) 2 1 D(2) 2P - 0 z=q (58)

2 2 P2 zr
t+ V-(2)V - )0 z_= h2 + (59)

)2) + I + (2) +gý = 0 z = h2 + (60)
t 2 2 z

By the use of (2), (3), (57), and (58) we can construct two interface boundary conditions
on Z =77:

P1 ,(1)+1 4 (1l 2+ + ,)(1) 2 (2) 2 +P ()(2) 2P,4)Z + g?7 = P2 D + I Vw)(2 + + g?7 (61)
-- VI)()Y•-}-(Iz1) =-- _-V4(2)Vq +{ 4(I)2) (2

_V)'V7 ) (62)

Here 1 is the velocity potential, h1and h2 are the water depths of the two layers, P is the
pressure, q] is the interface elevation and ý is the free surface elevation. The horizontal
gradient operator relates the horizontal velocity u to 4):

V a u =(u,v)=V4 (63)

For convenience we denote

-(2) = .( 2 )(z = h1) •(2) - (2 )(z = h2 + •)

W(2) = W( 2 )(z _ hi), &(2) - W( 2)(z - h2 + •) (64)

The work on the Dirichlet to Neumann relation that has been done for the first layer in
the previous section holds for this section. Its linear part can be summarize in equations
(15) and (17). For the second layer we again introduce an expansion of the velocity potential
as a power of series in z:

D( 2 )(xYZ't) 2 zn¢(n2)(XYt) (65)

n=0
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Here z z - h 2. Now by substituting this expansion into (56) we find

D(2) = cos(•V)4( 2) + sin(SV) W( 2) (66)
V

By using the above equation we can construct a linear relation between the interfacial wave
and the free surface

-(2) = sin(h 2V)V)( 2) + cos(h 2 V)W(2 ) (67)

3.2 Constructing accurate equations for the linear problem

For the linear problem that the kinematic and dynamic interface boundary conditions (62)
and (61) become

W(-) = W(2) z = 0, (68)

P1 441) + g2 = P2 t42) g 9 z = 0. (69)

The free surface boundary conditions (59) and (60) become

- D(2) = 0 @z = h2, (70)

t) +g = 0 @z = h2. (71)

By substituting (70) into the time derivative of (71) we get

$j() @gz(2 ) @ = h2. (72)

Substituting (68) into (67) yields

= - tan(h2V)V4( 2) + 1 (1) (73)cos(h 2V)

By substituting (21) into (73) and then into (66) on z = 0 and deriving twice with respect
to time we get

=t cos() 2V) i4 +tan(hiV) tan(h2V)44•) (74)

By using the linear version of (57), (72), (74) and the derivative of (69) with respect to time
we get

(PI - p2 tan(hlV) tan(h 2 V)) 44•) -P2 cos-1 (h 2 V)W (2) + (P2 - PI) gV(1) (75)

For solving the linear problem we need to solve for 1170) using (21), then solve for W (2)

using (73). After this we can use equations (72) and (75) in order to find the potentials
4)(2) and 4(1).
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3.3 Constructing the equations for solving the Dirichlet to Neumann re-
lation for the nonlinear problem

For the first layer we can use the same equations (15) and (45) that have been developed
in section 2.4 and in the same way find 1101). For the second layer let us use (66) and (62)
to obtain

- (Vq cos (7V) V + sin (1V)) d(2) -

(V? sin (4V) V - cos (1V)) vV( 2) = +( (1) Vq + fV (1). (76)

Here •7 - h2. By using this equation with (66) on z = h2 + ý we can solve for •(2)and
W(2)

3.4 Constructing equations for the nonlinear time marching

Again an analytical relation between VQ) and 12) must be developed in order to get equa-
tions for -$ using the dynamical interface boundary condition (61). Now by using (66) we

get three equations relating •(2), 17(2) and 4(2) to )(2)and 17(2). Eliminating 4(2) and

1• 2) from these three equations leaves a relation between 1J(2), 4(2) and •d2)

2)= -cot ((h2 + • - 7) V) vi(2) + sin- 1 ((h2 + 4 - i/) V) ) (77)

By using (13) we can define -(1) and Ti(1) with respect to d)(1)and Ti47(1)together with (15)
we can find a relation between WI 1) and V(1):

147(1) - cos ((hi - 7)V) (78)-cos ((h, 7 V)

Now let us substitute these two relations (77), (78) into the kinematic interface boundary
condition (62) and derive it with respect to time to get

V77t - qt cos (2hlV) sin- 2 ((h, + 7) V) V ) -

Vt - (&t - 7It) sin-2 ((h2 + ý - ) V) V 4)(2) +

(ýt - 7t) cot ((h 2 + 7 - j) V) sin- 1 ((h 2 + 4 - i/) V) ( +

sin-' ((h2 + • - i) V) D2) +

V77 + cos- 1 ((h, +7q) V) sin ((h, - V1) V) -41)-

(V17 + cot ((h2 + • - 7) V)) t(2) = 0 (79)

Equation (79) together with equations (60) and (61) is a set of equations for 4)(1), •(2) and

4(2) and equations (2) and (59) are equations for q and •.
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4 Internal interfacial waves between two exponentially strat-
ified layers with a rigid-lid

4.1 An infinite series solution for the Laplace equation in each layer over
a horizontal bottom

The equations governing the irrotational flow of an incompressible inviscid fluid in the lower
layer over a horizontal bottom are:

dpi

V24¢(1) +-(z1) + dz 4¢1) 0 -hl < z <,q (80)P1

, q v+ (l)v -4(1) 0 Z 7 (81)

S211 ¢(1) 2P =(82)¢I1g77-5 - 0-Z =,q (82)

2 2 Pi

4(1) 0 0 z -h, (83)

The equations governing the irrotational flow of an incompressible inviscid fluid in the upper
layer under a rigid-lid are:

dP2

v 2¢)(2 ) + ¢)( + dz D(2) o 0 , < z < h2  (84)
P2

qt + V¢(2)vq _ ¢(2) = 0 z = 7 (85)
(2)+ V(2) 2 +±1 ¢2) 2 g -0 z=7 (86)¢DI: +-+ +g?7 - Z=77(6

2 2 zP2
4(2) -0 z= h2  (87)

By the use of (81), (82), (85), and (86) we can construct two interface conditions on z = 'q:

,1(l) + 1 V¢(1) 2+ 1 (1) 2+ g --
P 't +2 2 ±?

,D (2) +1 V¢(2) + 1 ¢j)( 2 + g?8

P2 'V + 2 Z~ g (88)

_V¢4(1) Vq + (D () V _V¢(2),Vq + b¢(2) (9
Z Z (89)

Here ¢ is the velocity potential, hl and h2 are the water depths of the two layers, P is the
pressure and q the interface elevation. The horizontal gradient operator relates ¢ to the
horizontal velocity, u:

0 0
V - Cx u = (u,v). (90)

For convenience we denote ¢z = W and use the hat (^) and tilde (-) signs to denote the
value on z = 0 and on z = q respectively.
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dpa dP2

For an exponentially stratified fluid the ratios A and d are constant and will bePI P2

regarded as small parameters

dpl dp 2
dz dz

Pi P2

Notice that for linearly stratified fluid El and E2 will no longer be constants but functions

of z. Nevertheless, their z derivatives will be of 0 E2 and every additional z derivative will
further more increase the order, so if we choose to have an accuracy of 0 (,) the following
derivations hold for linearly stratified fluids as well.

Now let us introduce an expansion of the velocity potential as a power series in the

vertical coordinates with a small perturbation related to the stratification:

4(1) (x, y, z, t) l)(x, y, z, t) + EiliQ) (x, y,z,t)

= En=0 zn (0O,n(x, y, t)). (91)

By substituting (91) into (80) and collecting equal powers of z we obtain recursive relations

(1 V24(1) V72R() 001)

(n 0,n 1) n 00)l,n_0,n l (92)
00,n+2 (n + 1)(n + 2)' 1,n+2 (n + 1)(n + 2) (n + 2)"

Now by substituting (92) into (91) we get

)fl 2nn 2nE(- Z~n z ' 2n A(1) zn+ v-'2no4(1)

(P1)xY'Zt) = n=(1 (2 n)!- V- '00+ (2n + 1)! '0 +

o0 z2n 1 
2
n+l 2

2
n+l 2n

Z(_l)n,, , v2no(l) n Z2 n () + v2n (1) z n.2n _2o (1) (93)
n=O (2n)! 1,0 (2n + 1)! 00,0 + (2n + 1)! 1,1 + (2n)!v 0,1

This is a series solution with 4 unknown functions 0(1) and 00(1) 0(1) and 0(1) Note thatWOO O,1' Wl,O 0 1t

the velocities in layer 1 at the undisturbed interface z = 0 are given by

0 + E + i)-=0 (94)
rf,(l) V) -I 00)-~()
£11)•- V •)-- lV )1) - V (10,0 1-a~ ~ ,0,•xTA1

w 0l 1 1 , ' z=o0 (94)

By using Rayleigh's notation and (94) we can write equation (93) as

1(1)(x,,y,z,t) = cos(zV) + - Izcos(zV) + ElsinV) 1) +

sin(zV) z sin(zV) • 1) - l cos(zVIt•.l) +- sln~ /zV}) (95)
V l2V W,+,1V Wl(5

Equation (95) enables us to write V4)(1) and WM1 ):
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VD(') 1 + lElz COS(ZV)V + 1E1 sin(zV) (W1) +

1 - ½lez sin(zV)0(1 ) + El COS(ZV)V(41) + E, sin(zV)W( 1 ) (96)

Wl) = E1 cos(zV) - 1 + ½•lZ sin(zV)V 4)(1) +

1-- lz COs(zV) - sin(zV)^ (1)- E, sin(zV)VV1) + el cos(zV)W•1) (97)

Now with the use of (97) and (94) the horizontal bottom condition (83) can be expressed
as

O W, tan(hIV)V(01)

0 ] : tan(hlV)V 1) -½hi tan2(hlV)(') (98)

A similar relation can be found for the upper layer

O W:(2) - tan(h2V)V0 2 )

S1 IV2) = tan(h2 V)Vd2) + ½h2 tan2(h 2 V),$( 2) (99)

4.2 Constructing the accurate equations for the linear problem

For small amplitude waves in the sense that the ration between the amplitude to the wave
length (wave slope) is small the problem becomes linear. We can see that the kinematic
and dynamic interface conditions (89) and (88) become

W(-) = W(2) -z = 0 (100)

P3 4)+grl + .=g1 z2 0 (101)

By the use of (98), (99) and (100) we can construct relations between 4(1) 4)(1) 4)(2) and
4)(2)

•( 02) __ tan(h,V ) •(1)

0 tn(h 2 V) 0
V2) h 2 tan(hiV)€)(01) el tan(hIV ),$(1) hi tan2(hV) )(1) = 0

1 2V 0 -E2 tan(h2 V) 1 2tan(h2 V)V 0 (102)

By using (102), the linear version of (82) and the time derivative of (101) we get

0 tan(hIV) a2 $ (1) WP) gV01)

0 O: P1 -+- P2tan(1h2 V) at" 0 = (P2 -Pl2

Itan(hj V) a2 _1
0 l P1 + P2E2 tan(h2V) DT1=

(P2 -P)gWl1) h2 tan(h1V) + c hl tan2 (hV) 92 4(1) (103)2E2 2tan(h2V)V a7 0
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Now by using equations (103) and (98) we can solve ) and W

4.3 Constructing approximate equations for the nonlinear Dirichlet to
Neumann problem

Equation (80) allows us to replace horizontal differentiation by vertical ones in order to
obtain

V 2 m,,D(l) = (-i)m z2m( + 7- a2m1l / (104)

O9z 2 m ± 9 z 2 m-l

By extending one of the main Boussinesq concepts we look for 4(1) of the form

00

(1)(x,yzt) =Z(z + hl)n (0o,n(x,y,t) + ElOI,n(x,y,t)) (105)
n=O

From (105) it follows that
are4)(1) 00 n! )n-m (0,X ,t ,t)

Drn1 - Z (n-in)!(z + h) (¢On(Xy,t) ± ln y,t)). (106)
TI=m

Now by using (104) and (106) we get

v 2 m (-1) En=2m (n-!m)(z - hl)n-2mon + (107)

61 (m1 )m m nm!(z + hi)n- 2 m,± mc 1 + (z +} hi)n- 2m+l +0 2I(l Eno=2m (n--2rn)!~ h n + l Tn F-nm E=2m-1 (n-2m+l)! (z+h 0,n 'I_0 . ,

V 2 mW()m n! (z + hi)n- 2m-l on + (108)Vmf)= (-1)m F-•=)2m+l (n-2m-1)!

l(_)m ZI=2m± (n-2m-n)! (z ± h 1 n- 2 m-l, n2m n! (z ± h 1 n- 2 mn

Next by substituting m = 0, 1 into equations (107) and (108) we get the following equations
for 2((1), ( w(1) and V2V(l):

(0 1) =3 noo=0

Sn=0 hi
r0(1 ) 3 n-1

V 0 E32(n-!2)!,h h 00~,n La 0 (109)

= E3n1 nhW¢0,'n,

V2- (1) - _ 1_ E -3 n 2!o-

W 2 1 =2 ( 301)3 n !--- h 0n=2190,n -Z 0 (1 0 )

0 g] : bll) 239



Notice that (107) and (108) were truncated. Only the first 4 base functions were used in
each order. This enables us to find these base functions using the 8 equations written in
(109) and (110). Had we wanted to use more base functions for higher accuracy, we would
have needed to increase the number of equations by substituting m = 2, m = 3 and so on
into equations (107) and (108). That would also have increased the order of the derivatives,
which would have been more complex to solve.

Note that the accuracy of this calculation is lower than the one presented in section 2.4
because we need to use the odd base functions as well as the even ones. Thus, for the same
number of base functions the expansion of •(1) shown in equation (105) gives us a power
expansion up to z3 , whereas in section 2.4 it was up to z6.

By solving equation sets (109) and (110) for the base functions 1n = 0A..3 and 01,n)

= 0.3 in terms of,$('), 0(1) 41(l) and -(1) and their second horizontal derivatives we
get

0 o 0 (1) $(1) h WM - 1 -72(1) + IV -

1 0,0 -0 0 1 2 0 6 00

(1) 1 V2)(1) 2hv2 ^(1)

0(1) - _1,72,$(1) 1 , 2T ()

00,2 - 2 + 21hV0

(1) __ 1V 2 17(1) (111)0,3 6- -- O

0 0) hi 1 • •- 1hh10  +61 0 2V24)(l) 2,V2l -- 1h21 )

¢(1) (1) -V240) 1 Wt(1) - 1 V(1) + h,-V24)(1)

(1) -1_v24l) 1v72W,() -V 1~ -(1 1 2()
01,2 -- 2 + 2 "0WO 2 1

(1) 1 2-()+I 240
401,3 i 2W(] + Wwk h, ) (112)13 6h1  6h1 • '0

Substituting the solutions (111) and (112) into (91) on z = i7 gives us relations involving

•1)~~~ 77)(1)2,7)27}01 qnd 3 V2

4 (1) - - (h- - ()- )2 v21) + 1 (h, -i7) 3 v2vo(1) (113)

•)1)•-- )•),(h _T] (•1)- n h _ )2 V2$(l)

-1 (hi _,)2 (l) I- (hi _,)3 V24(oX) + ' (hi - ) 3 V2l) (114)

WO 6h0 (114)
Labels (98), (113) and (114) presents us with 4 equations for •(), W ) and (1)

We can solve 0 and 1) using a numerical method such as finite differences.
By implementing this method we receive 2 sets of linear equations, which take the form of
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Sa• "0 pad•

A)1) -B'(1) [ 01 (115)
"A0 nl 00n

"A1 pad6 "1 pad6 =) " 1 0 (116)
)l 1 + C(1) 4 ()"'lnl C'' 0 .'3 "0

"Here A-,pand are the finite difference matrices representing the Dirichlet to Neu-

mann relation (label 98), A( 1)and B(l)are the finite difference matrices representing the
relation between the undisturbed potential and vertical velocity and the potential on the
interfacial wave. C(1) and C21) are the finite difference matrices representing the relation

between (i1) and ) to 1. C(i)is the finite difference matrix representing the relation

between WI(l) and -)(1) to f4(1). By using (W1) ri( 1, -1) and rl) we can find the base
1i 00 0' 0 1 ~

functions using (111) and (112), which gives us the properties of the flow at every point in
the layer.

Now let us present a way to calculate the properties of the flow in the upper layer.
We can easily find (4/2) and W(2) using (89). Applying the same technique described in
subsection 2.1 we can construct an equivalent version of equations (95) and (97) for the
upper layer

I(2) = COS(ZV) + 1E 2 Z COS(ZV)E2 0 sin(zV) + 2) +

sin(zV) _ zsin(zV) W(2) cos(zV) 2  sin(zV) W(2)

V E2 2V 0+E2 1ZVD + £2 V 1 (117)

-1 + ± 62 z sin(zV)V,(o + 1 - 2 V0cos~zV)- £Z sin~
2 0 I2/2, "OSZV --- 2

-2 sin(zV)V'I2) + £2 cos(zV)W}2 ) (118)

On z = we can use equations (117) and (118) to solve 4(1), Wrl •1) and -r(1) and
substitute the solution into (117) and (118) to get 4(2) and W(2) at every point in the layer.

4.4 Constructing the equations for the nonlinear time marching

An analytical relation between W4i) and -(2) must be developed in order to enable marching
1 in time using the dynamical interface boundary condition (88). Equations (95), (97) and

(98) on z = are a set of 6 equations relating V)1), z ) 1 ), f7) ( '1)• V0(11) and
Wi-1) By eliminating these 6 equations we get

= -tan ((hi +,q)V)VV') (119)

-(1) - - tan ((hi +- q) V) VV1) +

Isec2 ((hl - '/) V)(1 - hi + (2 + hi)cos (2h 1 7) + 2cos (2m/V) + 2m/sin (2hiV) V) ()0I)
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Similar relations can be found for the upper layer

WO- =tan ((h 2 - 7) V) V402 ) (120)

W, - tan ((h2 - 77) V) VSD2I +

1 sec2 ((h 2 -7) V) (1- h2 + (2 + h2 )cos(2h 2 V) + 2cos(2 97V) - 27sin(2h 2 V) V) 042)

By using equations (119), (120) and (89) we get relations between 4(1), (W1), J 2)and )(2)
0 1 0 1

-V•/4i) - tan ((hi + ,q) V) V-0) = V-/8(2) + tan ((h 2 - 77) V) V4(2)

1 sec 2 ((hi +,q) V) (1-hi + (2+ h1 ) cos (2hV) + 2cos (297V) + 2r1sin(2hlV) V) Vl) -

- tan ((hi + 7) V) V$(111

¼ sec 2 ((h2 - 77) V) (1 - h2 + (2 + h2 ) cos (2h 2 V) + 2 cos (297V) - 217 sin (2h 2V) V) (ý -

V 1i•2  + tan ((h2 -7) V) V4K2 / (121)

By taking the time derivative of (121) we get

77t sec 2 ((hi + ij) V) V24(0l) - (Vrj + tan ((hi + 77) V) V) a 8(1) =

71t sec 2 ((h2  )V) V24)( 2) - (V?7 - tan ((h2 - n) V) V) a(2)

-7tt sec 2 ((hi + q1) V) V2i•i) + 177t sec 2 ((hi +,q) V)

(-sin (277V) + (1 - hi + (2 + hi)cos(2hV))tan((h, +q7 ) V) + 2 sin (2hlV)) Vd)' +

(cos (277V) + 2V77 sin (2hlV)) tan ((hi + ,q) V) V4 1) +

41 sec2 ((h, +,q) V) (1-hi + (2 + hi) cos (2h 1 V) + 2cos (277V) + 277sin(2hV) V) a(1)

(V97 + tan ((hi + 71) V) V) 9(i) -

-77t sec2 ((h2 - 7) V) V2(ý 2 ) + ½97t seC2 ((h2 - '7) V)

(- sin (277V) + (1 - h2 + (2 + h2 ) cos (2h 2 V)) tan ((h2 - q) V) - 2 sin (2h 2V)) V04)

(cos (277V) + 2V 7 sin (2h 2V)) tan ((h 2 - 07)V) v4(2 +

l sec2 ((h2 -,q) V) (1 - h 2 + (2 + h2 ) cos (2h 2 V) + 2 cos (297V) - 297 sin (2h 2 V) V) a8(2) -

(V/ 7 - tan ((h2 - '7) V) V) 64)(2) (122)

Now by using equations (122), (81) and (88) we can march the problem in time.

5 Surface Quasi-Geostrophic Model

The quasi-geostrophic equation for constant stratification is
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09 + T0 - XY-- V2P + 1 P;, + 3y = 0 (123)

u= (-PY,'TX), XFz = a (124)

Here S = N2H2 , N is the buoyancy frequency, fo is the rotation frequency, H is the vertical

length scale, L is the horizontal length scale and T is the horizontal stream function and its

z-derivative relates to the potential temperature 0. Assuming zero initial potential vorticity

equation (123) becomes

(15
V2qj + 1-•P;zz + 13y = 0 (125)

S
The Boundary conditions for this one layer model are

Ot + •xP,-y - TyE)X - 0 Cdz = 0 (126)

XPz = o ©z = -H (127)

Equations (125), (126) and (127) represents the surface quasi-geostrophic model. We intro-
duce an expansion of T as a power series in z:

00

T(xyzt) = Zznn(XYýt) - 60 (128)
n=O

By substituting equation (128) into equation (125) and using equation (127) we get

cos(v'-SHV)b + sin(V/sHV)VI = 0 (129)

Therefore,

Cx =-cot vX{Hax

'y = -cot v'-H-L (130)
ay

As before, the hat sign (^) denotes the value on z = 0. Now by applying (130) to (126) we

get

a a
Ot-Oycot V-SH- E+ Ox cot v/H- E) =0 @z=0 (131)

The infinite differential operators in equation (131) can now be approximated using Taylor

approximation or Pad6 approximation to any required order and solved for R.
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6 A new Layered Quasi-Geostrophic Model

6.1 Formulating the equations for the layered model

The surface quasi-geostrophic model regards the entire water depth as one stratified layer. In
this new model the water depth is divided to two stratified layers with a density jump in the
interface. This represents better the ocean's density structure and should give more accurate
results than the one-layered representation. Due to the density jump in the interface there
is a mechanism for internal interfacial Rossby waves to propagate. The equations governing
the quasi-geostrophical flow of an incompressible inviscid fluid in the lower layer over a
horizontal bottom are:

V2 +1) f+ 1 T1()+ 0 (132)
S, i

6(l1) - VO(1) = N12W(1) CZ = 0 (133)+ t + a(1 ) " V7- = W(1) LZ = 0 (134)

E) 0 Cz = -hl (135)

The equations governing the quasi-geostrophical flow of an incompressible inviscid fluid in
the upper layer under a rigid lid are:

S-2 !-2) + = 0 (136)

(2)+$2 (2)E) + u(2)u .E) = F z= h2  (137)
(2) + f,(2) . V -)(2) = N22g7(2) z = 0 (138)

77t + 0C(2) • V7= WiV(2) @z = 0 (139)

Here we added a surface potential temperature forcing function F to the surface boundary
condition that is presented in equation (137). Using (133), (134), (138) and (139) we can
write the potential temperature interfacial equation

N22 ( f•I1 ) - .•() V 60()_- NJ

N2 6(2) + fl(2) . V 6(2) - N2r0 -z 0 (140)

Here,

0 0
(141)

u =(- , 'ax), 'iz = E). (142)
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Now in order for the problem to be well-posed we need to construct a pressure interfacial
condition. Let us write the pressure formulation for each layer,

-Ps -p 2(z)= pig(h 2 -z)-Apg(h 2 -z)-P' @ O<z<h2  (143)

-pS--Pi(z) =pig(h2 -z)-Apg(h2-ri)-p! ©-hi <z<0. (144)

Here p' and pý are the non-hydrostatic part of the pressure, p, is the rigid-lid surface
pressure and Ap = P2 - pl. By defining T with p. as the datum and using equations (143)
and (144) we can write the pressure interfacial equation,

Xj(2) + Apg• 1) z =0. (145)

By using (133) and (134) we can also construct an equation relating 7 to the potential
temperature,

7t= + eI 1 ) .f ( (1 ) - N12 Laz = 0. (146)

6.2 An infinite series solution for the quasi-geostrophic equation in each
layer over a horizontal bottom

We introduce an expansion of T as a power series in z:

001

'(x,y,z,t) = OZn(1n(Xyt) - 1/3 (147)
n=O

By substituting equation (147) for the lower layer into equation (132) and using equation
(135) we get

cos(•l Sh 1V)( 1 ) + sin(V-S-ThV)V(1V1 ) = 0 (148)

and by substituting equation (147) for the upper layer into equation (136) we get

- sin(v(z-h2)V) &2) + cos x/ (z-h 2) V (2) _ y3. (149)
S V

Now by using equation (149) we can formulate the relations between the flow properties of
the upper layer on the interface and the flow properties on the surface,

0(2) = V/ecos •/2h 2V E(2) + V\/sin v'2h2V VXP( 2) (150)

(2) sin (v'h 2 V) 6 (2) +cos v/I2h 2V P(2 ) - I 0y3. (151)
V 6

Let us now eliminate equations (145), (148), (150) and (151) to give us an equation con-

taining only the potential temperature functions e( 1),e( 21and 0(2)
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VS2Lcot vctv hlV 6 1 ) + I cot \/fSh 2V •(2) - V _csc V/•2h 2V 6(2)+

VG2 Ap gr-/ y 3 = 0. (152)

The next step is to take the derivative of equation (152) with respect to time and also use
equations (137) and (146) in order to get

1 cot v'I-h 2V et 2
- V_ s h2V F - U(2). -

f f (1)v (1) - N2, - I cot \/SjhlV 1 •) (153)

At this point we have all the equations needed in order to construct the method. From initial

conditions or from a prior time step we know ()(1), a(2) and q. By the use of equations

(145), (148) and (151) we can find p(1), •(2) and IJ(2). Afterwards, we can use equations

(140), (153) and (146) in order to march 0(1), 6 (2) and q in time and the process can be
repeated.
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Two-dimensional Vortex Shedding From a Corner

David Vener

1 Introduction

The understanding of the unsteady separation of high-Reynolds number flow past a pointed
edge is of interest to several fluid-mechanical problems, including flow past an aircraft wing
or flow past a coastline. Much work has been done on the special case of flow past a semi-
infinite line, notably by Rott [1], but much of that work has not been extended to less sharp
points.

In this paper, we consider a two-dimensional approximation of high Reynolds number
vortex shedding from a corner initially at rest in a motionless, unbounded, incompressible
fluid. If the corner is sufficiently sharp, that is if it has exterior angle greater than 7r,

vorticity must be shed when the fluid begins to move in order to maintain regularity at the
edge. We consider a flow with a vortex sheet emanating from the corner at t = 0. As it
moves away from the corner, the vortex sheet rolls up at its end producing an effect that is
approximately that of a concentrated vortex. Therefore, we model the shed vorticity by a
single point vortex.

The vortex created at t = 0 moves in the flow created by itself, it's image vortex, and the
forcing flow. The magnitude of the vortex may not decrease because this would represent
the unraveling of the sheet. Therefore, if it reaches some maximum at t = t, a new vortex
must be created in order to maintain regularity at the corner. The magnitude of the first
vortex will remain constant while the the magnitude of the second vortex increases and both
move in the flow created by the forcing and both vortices and their images. This process
could continue ad infinitum each time the most recently created vortex reaches a maximum.

2 Mathematical Formulation

Let us consider a body with a (not necessarily bounded) boundary C in the physical plane,
which we shall denote as the z-plane with z = x+iy with x,y E Re. Now suppose F : z -4
is a conformal mapping from the exterior of C in the physical plane to the plane Im(() > 0.

We create this image plane because we expect to be able to satisfy the boundary con-
dition at the body more easily in this plane than in the physical plane. In the physical
plane, we require that the velocity be parallel to the boundary. In the mapped plane, this
is equivalent to

Im' Im(=0 = 0. (1)
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Since a point vortex has a logarithmic singularity, we require

4 Ilog(( - (o) + const. (2)
27r

near C = C, where F is the strength of the vortex. To satisfy the boundary condition, we
place an "image vortex" with strength -1 at position ý =0 within the body in the lower
half plane. The potential of the two vortices is

() = • log(( - (0) - log((-Co) , (3)

which satisfies the boundary condition (1).

To calculate the potential in the (-plane due to n vortices with strengths Fa, F 2 ,... n

at positions 1, (2, . . , (n respectively, we need only superimpose the potentials due to the
vortices and their images. Therefore, the potential including n vortices and the forcing flow,

U (t), is
n

ji(1) =U (t) ( + E Y r, log(( - (j) - log(( - C).(4)
j=1

Therefore, since • (P) is analytic in the upper half plane and F is a conformal map,
4)(F-1 (z)) is the complex potential in the physical plane which is created by n vortices
at z1 •- F(C), z 2 = F(C),..., z, == F((), their images, and a uniform flow. Thus, we can
write the complex velocity in the physical plane, in terms of the variables in the (-plane.
We have

d = d() (5)

1 (6)

Without loss of generality, we can choose the center of coordinates of the z-plane and
F so that the corner in the physical plane is at z = 0 and so that F (0) = 0. Therefore, if
F' (0) = 0, the only way to make the velocity at the origin nonsingular is to force V' (0) = 0.
This condition is known as the Kutta condition and can be expressed as

U(t)+ -0. (7)

As each new vortex is created, n increases. Note that this condition only depends on
variables defined in the (-plane.

We now derive the equation of motion for the vortices in the flow. Recall, that the
velocity near a vortex has a singular part due to its strength and a nonsingular part due to

the flow and all of the other vortices and images. Saffman [2] shows that the balance of the
pressure force on a small circle around the vortex and the change of momentum through the
circle requires that the vortex move with the nonsingular part of the flow. In the physical
plane that means

d_-5_ = l-m d D F (z) -±- log (z - zj)
dT z-.zj _dz 2w

= lim F'1C) d (4) - 1 log (F(C) - F(Cj))
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Removing the terms which are not singular at ( =j and combining the singular logarithms,
we have

1 { (__n k li __ _ im d log F() d- F(_j)d-t• P ((j 27E j-• (k (j -i2r j - i7rj d

(8)
Finally, we expand F(() in a Taylor series around (j to find that

log F(()-F((j) = log F'(j) 1+2F,((j) (j +o (j)2

2FI (j~)

= logF()+ F"(1) ((+)o (+ - ) (9)
2F' (()

Substituting equation (9) into equation (8) reveals that

d-2Tj _ 1 U t i n Fk lFk irj il~i Ft'(0j (10)
dt F'(4(j)vt - k 5-j 45-4i 22r Q-Qj 41rF'( _2) J

The last term in equation (10) is known as the Routh correction and takes into account the
self advection of the vortex. For convenience, we will study the evolution in the (-plane,
so we convert equation (10) by conjugating both sides and multiplying on both sides by
d4j/dzj 1/F'((j) to find that for each 1 < j < n

- , ) 1 U (t)-r -- k if- + F1 F((j)

(11)

For completeness, we mention here that some authors have used equations other than
equation (11) to study the shedding of vortices in two-dimensional flows. Brown and Michael
[3] include a correction term on the left-hand side of equation (11) which is proportional to
dfr/dt to balance the force on a hypothetical line of vorticity stretching from the corner to
the vortex, which feeds the vortex allowing it to grow in strength. Howe [4] also considers
a line of vorticity, but he further requires that the correction term account for balancing
the torque on the sheet. We will discuss Brown and Michael's equation briefly in section
3, but will not consider Howe's equation because it is significantly more complicated and
even according to his own results only adds a very small correction.

3 The Evolution of the First Vortex

As discussed in Section 2, at t = 0, i.e. just as the fluid starts moving, we expect a vortex
to be shed from the corner in the physical plane. Since there is only one vortex in the fluid
initially, we need only consider equation (11) for j = n = 1 where F1 allows the Kutta
condition, i.e. equation (7), to be satisfied. Solving equation (7) for F1 yields

(12
S= 2 29 1U(t). (12)Ci - Ci
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Therefore, we have

d~i 1 U iF1  + iF1 F"(()1

dt IF' ((1)[2 27r (1- ý1- 4Zr F7()j J

IF' (u)12  + C 2  F"() 11 2 1 (13)
4 (Im1)2  F'(C) 4Im-1

with the initial condition that (1 (0) 0.

3.1 An Exact Solution for the Infinite Wedge

To proceed, we must choose the boundary in the physical plane and calculate the conformal
map F. An infinite wedge with its tip at z = 0 is of particular interest because in the
region very near the tip, any corner is approximated by the infinite wedge. Therefore, let
us choose the boundary to be an infinite wedge with exterior angle air that is bisected by
the imaginary axis. The corresponding conformal map is therefore given by

F(C) - - (14)

so that equation (13) becomes

dC1  U (t) [ C 2  (24-i 1) (1i
dt 2 1(211 12 (a -1)1 4(Im(1)2 4im4l (15)

Writing ( = + i7r with ý, 7 real, we separate real and imaginary parts in equation (15) to

find coupled equations for df 1/dt and dr1 /dt. That is

1 U (t)
I 4 2 (16)dt Ce 2+ 71 e1 4 4,

and d7__1 U (t) a• -- 1 41(17)

dt a 2  2 2+ q2 C-1 4 ql

To solve equations (16) and (17), we note that the only explicit time dependence occurs
in a prefactor that multiplies the right side of both equations. Therefore, by dividing
equation (16) by equation (17) we are left with a differential equation for 61 as a function
of qj. Solving this equation with the initial condition 6(q = 0) = 0 yields gives us

4 a (18)

Now, we can solve for ql (t) in equation (17) by substituting equation (18) for 61 recalling
that q- > 0. This yields an exact solution for 71, which in turn gives us an exact solution
for (I. We find

(C -I1) (2a - 1) It 2c- • t 4- -a

i 5/2( (u U (T) dT 2 ai + sign u (T') dT -
4a5/ Jo 2 Jo 2

(19)
This indicates that the first vortex moves away from the origin along a ray in the C-plane.
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3.2 Preparing to Shed the Second Vortex

As discussed in Section (2), we expect the vortex to continue along its path as determined
by equation (19) until such time that the magnitude of its strength reaches a maximum.
From equation (12), we compute

2ru (t) (a - 1) (2a - 1) t 2ad• •-11
Fr (t) - 5/2 ]U(7)dr v (20)

Without loss of generality, we can take U to be nonnegative for small t since replacing U
with -U and ý1 with -ýj leaves equations (16) and (17) unchanged. With this assumption,
upon differentiating equation (20) by t, we see that F, reaches a local extremum at t = if
and only if

o U2
U' U dT+ - = 0. (21)

I0 2a - 1

3.3 An Exact Solution with the Brown and Michael Model

As discussed in Section 2, Brown and Michael [3] added a correction term to equation (10)
to account for an unbalanced force on a vortex sheet leading up to the vortex coming out
of the origin. For the first vortex, the corrected equation is

dhT1 ldF 1  1 U i_ j ijF"(_j)} (22)

dt ,F dtt F U (t) 27 (j- 4 F"(4j) (22)

Cortelezzi [5] gives an exact solution for the infinite wedge in the case that a = 2. However,
we can solve equation (22) for any value of a, 1 < a < 2. In terms of (I equation (22) can
be rewritten

-- •-1~~ ~ "-- -•U •] • 1- II (t) [•e a-1 --

-Q U +j (1__ +__

___ Ue(i) - 2
(23)

Changing variables by setting 4 = peiO reduces equation (23)to equations for j and 0. They
are

a-4sin2  U(t) (24)
4a 2 sin9 p2a-1,

and
p U + a-1 UcosG (25)

a+1U a 2 (a+ 1) p2a-2 (

We now solve equations (24) and (25) using the following change of variables:

A U(2a-)/(a+) p 2a-1, = COS O, t - f U3/(o+) (T) dT. (26)

After some algebra, we have

dA (2d-1)(-1) = 4 4.2 (27)
it a2 (a+l) f-1 -2 43A
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with the initial conditions that A(0) = 0 and M(0) =- p0. Combining equations (27) to form
a single differential equation for u = A2 gives

d2u _(2a-1)(a-1)(4-a) a (2-a) 1 du 2

cflt 2 
- 2a 4 (a+1) (2a- 1)(a- 1)u (dt8

To solve this equation, we set du/dt = f(u) since there is no explicit time dependence.
After some manipulation, we find that

A t (2a-1)(a- 1) (29)
2c 2 ((+1) 4-at

and that

2 (30)

Putting all of this together, we find that the exact solution for the first vortex with the
Brown and Michael correction is

(2a- 1)(a- 1) v-a 1 (+--j ft d -1 N/4-a + /a

2a 2 (a + 1) U (t) JO U 2 2
(31)

Therefore,

I

27w (2a-1) (a -1) v4--a 2a-1 a(2Q -1) "a(2FI=•U 2a2(a+l) + 1 (U(-))--T dT , (32)

which implies that the first vortex increases in strength until t = tl satisfies

a(2a - 1),fh \3 4a+1

a + I (t) 11 (T)) ( -) d + U (t1 ) t-+1 = 0. (33)

This agrees with the solution found by Cortelezzi for a = 2. In addition, equation (31)
agrees with our solution without the vortex sheet, equation (19), in its angle of departure.

4 The Second Vortex for the Infinite Wedge

If for some tl > 0, equation (21) is satisfied, a second vortex will be shed from the corner
of the infinite wedge, and the strength of the first vortex will be fixed for all times t > t1 .
For example, if U = sint, tj = cos- 1 (-1/2a). The system of equations given by (11) with
n = 2 is

d _ _ 1 () i _F2 F 12 if 1  iF 1  (34)

dt a 2 lI(12 2  27r (1 - (2 (1 -- ( 27 (1 -- ( 4 I1 l

and

d< 2 1 f i F1 _ F iF2_+ ir 2  (35)dt =O2 1(212ce-2 u (t) 2- - -< ¢-¢ 2 --- • +( -1)35)
d2a7C I (\2w ~-7 (1 (-( 27w (2 -(2 47r(2J
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with the initial conditions that (1 is continuous at tl and that (2 (ti) = 0.
From the Kutta condition, we can solve for F2 yielding

iF1 1 -1
1¢r2 1riu (t) + (36)

Plugging equation (36) into equation (35), we find

d(2 _ 1 U (t) Tii + U+ (1dt - 21(212a-2 27 (2 -(j (-2--(1 27r1(" 1•2 4 (Ira@)2 4ia-1)4-m(2

(37)
Since 0 < (21 <« I( (t)I for t - tl < 1, we can expand the second term inside the braces in

equation (37). Defining
iF?1 C1 - C

K, (t) = U+ 2  (38)

and 1

SE2 = 1 
(39)

•2 1212a- 2 '

we are able to write

d-t - 2 Ki (t) 1 2 i 4 2Re(gl)72 - 2Re(hl)C 2  1o(C3)}, (40)

where
gl= • , hi= •. (41)

4.1 The Size of the Terms in Equation (40)

Recall that we defined
irl ¢ - •(42)Ki (t) = U + (42)11

for all times t. From the Kutta condition, K 1 = 0 for all t < tl. Therefore,

d U/ i+ 1 d (I - __ + __

dt 27 dt C(112  27r 11 2

= 0 (43)

for all t < tl. However, tj is defined to be the location of the first local extremum of F 1 so

that Fr (ti) = 0. Therefore,

lim dKt (t) U'(t) iF1 (tl) d (1 -
tt+ (t 27r dt 1i( 12

= 0, (44)
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since U and (I are continuous functions at t = tl. This means that the Taylor expansion of
K1 for t > t1 is of the form

K 1 (t)= - 3 -(t- tl) 2 -- (t - tl) 3  (45)

where

k r = li (4 dK6)
t-t+ 2  (t)(

is, in general, a nonzero constant.
Now if we suppose that ( 2 - (t - ti)O, equating exponents of the leading terms on both

sides of equation (40), we find that

/3 - I min(2,Q3) - 2,8 (a - 1) (47)

so that
p= 2-3 ce < 5 (48)

2cQ-1 Ol<-

4.2~~- Cae1:a>"/

4.2 Case 1: ca> 5/4

From equation (48), we see that if a > 5/4, then to leading order in (t - ti), equation (40)
is

d(2_ 2Re(gi (tl))-@."(9

d t a 2 1 21 2o -9

Therefore, setting (2 a (t - tI) 1/(2o-2), we find an equation for a:

a- - -2 2 Re(g1 (ti)). (50)
2a - 2 2la12 -

Solving for a, we find

4a - 4 2a-2
a- a2 IRe(g1 (t1 ))[ sign(-Re(gi(ti))). (51)

Therefore, if Re (gi) > 0,

S4a-4 2a-2

( 22 IRe(g1 (tl))I (t - tl)/( 2 a- 2 ) (52)

and
k, 4a- 4 2 (-2 2+2-

F2 - 7 2 a•2  IRe(gi (t1))I (t - t1 ) ,2-2 (53)

However, if Re (g, (ti)) < 0, we would have a contradiction because the vortex would be
trying to stay on the wedge so that the boundary condition cannot be satisfied. Therefore,
we must determine sign (Re (gl)). We calculate,

iF]
sign (Re (g9)) = sign 2ir(2

= sign (F1 ) sign Im ( (54)
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We know that if signU > 0, then (I is in the first quadrant so that ( 2 is in the upper half
plane; however, (i is in the second quadrant if signU < 0, which implies that (2 is in the
lower half plane. Therefore, sign Im (2 signU, and

sign (Re (gi)) = sign(rl)sign(U)

- (sign(U))2 > 0, (55)

which implies that the second vortex can always be released. Once the vortex moves away
from the singular point at the origin, the motion of both vortices can be analyzed by
numerically integrating equations (34) and (35).

4.3 Case 2: a < 5/4

Setting (2 62 + i772 , we see that equation (40) is, to leading order in (t - tl),

d( 1 {k (t itl)2  1 a i 2 (56)
dt a2 -oi2a- ý 2 4 4 + +1) .

This is equivalent to equation (15) with (I replaced with (2 and U (t) replaced with
k2 (t - t1 )2 /2. Therefore,

(2 - (c -l) (2cel )Ikil (t _ t)3 2a-1 V-i + sign (kl) v14_-- (57)

12a 5/ 2  2 2

and
7rki (t - tl) 2  (oa -- 1)_(2a - 1) ilI (t - tl)3 2a-1 (58)

F2 '•-' 12 a 5 / 2

shortly after the second vortex is created. After it moves away from the origin, we can
again use numerical integration to explore the dynamics of the system.

5 More Vortices for the Infinite Wedge

Now suppose that at some t 2 > tl, the magnitude of the second vortex reaches a maxi-
mum. If we again assume that, once this maximum is reached, the strength of the second
vortex is fixed, a third vortex must be shed from the origin to satisfy the Kutta condition.
Furthermore, under certain conditions which will be discussed in this section, this process
could repeat itself several (perhaps, infinitely many) more times. Therefore, for the rest of
the section let us suppose that n vortices have been released from the origin and they are
located at z1 , z2 , . .. , Zn respectively in the physical plane (corresponding to (1, (2, .. . , (n in
the image plane). We further assume that each of the (j are nonzero and that there exist
times 0 < tl < t 2 < "" < tn at which each of the n vortices have reached a maximum,
respectively. We now consider the dynamics as the next vortex is released, i.e. for t > tn.

Using equation (11) for a system of n + 1 vortices and equation (14) we have for the
newest vortex
d~n+l n+1U (t) _ i n rk Ik irn+l 1) r'n+l}

dt - En1i -n (n+1 - (k 27r _n+1j -n(.+1 i (, -k=l '' (

(59)
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while for each j, 1 < j < n,

di = - kj (-nk F-•k 2+ - , (60)

where we have defined, in agreement with section 4,
1

El = 12Iz - (61)
a2 1(j12ce-2 (1

for each 1, 1 < 1 < n + 1. These equations must be solved with the initial conditions

ýn+I (tn) = 0, £n+l (tn) = 0, (62)

for the new vortex and that each of the other vortices must move in a continuous manner,
holding their strength constant. From the Kutta Condition, i.e. equation (7) with n + 1
vortices, we can solve for IF+,, finding

£n+l = 27ri c+l U (t) + 1. (63)
(n+I - (n+1 I k=l1 2 k (k I

We can substitute equation (63) into equation (59) and expand-the resulting equation
to leading order in (n,+ since, for t - tn <« 1, (n+, < (j, for all 1 < j < n. The resulting
equation of motion is

____1 1(_1 (aK 1) ,+11 -2 3dt = En+I K. (t) 1 -+ i 2m(a-2Re (gn) (n+ -2Re (hn) (n.+I o(( )4t ~(Im~n+]) 2  4Im~n+] -J (64))

(64)

with
wit (t) = U(t)+ ±: 2k(k (k (65)

andk=1
2 7 KkI

9nan=d l_ hn = E i•=k (66)

Note that equation (64) has exactly the same form as equation (40). Furthermore, the same
reasoning used in section 4.1 to show that Ki _ (t - ti) 2 can be reapplied to show that

Kn (t) ,- (t - t;n) 2  (67)

for t - tn < 1 with

d n ifjk(tn) (k -- ý . (68)

Supposing that (n+, (t - t,), equating the exponents of the leading terms in equa-
tion (64) reveals that

1 5
a 23-2 - 4 (69)

2c -- 1 4

as before.
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5.1 Revisiting a > 5/4

Following section 4.2, we find that setting an+l a (t- tn)'( 2 -2 ) and substituting in
equation (64) gives us an equation for a which can be solved to give

a a - 4• 1 Re (g. (t.))[ Ia2V/sign(-Re(g.(tn))) (70)
a2-

which still leaves us with a contradiction if Re(gn(tn)) < 0. However, with more than two
vortices it is actually possible for this contradiction to manifest itself. In fact, for the infinite
line (a = 2), considered by Cortelezzi and others, and U = sint, this contradiction arises
at t2, so that the third vortex cannot be shed. If we choose

2 
-
2
7rTt+ 1 t < T

U (t) = -- -- t< -(71)

UIt) + 10 cos(207t), t>T(

with r = .075 following Cortelezzi [5], gn (ta) is always positive so that vortices can be shed
indefinitely.

5.2 Vorticity Dipoles

To handle the contradiction just discussed, we must consider what happens when vorticity
is held near the boundary. The contradiction arises because the newly shed vortex and
its image are at the same point in space when the vortex is on the boundary. Rott [1]
suggests that one possibility would be to consider a boundary layer of vorticity around the
body. A simpler idea is to treat the vortex and its image together as a vorticity dipole
with strength D chosen to be parallel to the boundary. However, this approximation has
a few complications. First, the strength of the dipole is not the same in the physical and
mapped planes so that the shedding condition either cannot be treated as only dependent on
variables in the mapped plane or does not correspond to the strength of the dipole reaching
a maximum. Second, there is some ambiguity as to which direction along the boundary the
dipole travels; that is, two possible trajectories appear to satisfy the Kutta condition at the
origin and the equations of motion. These complications have not been worked out yet and
will be the subject of future worlk.
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Laboratory experiments on the effect of baroclinic eddies on a
dense plume in a rotating stratified fluid

Danielle Wain

1 Introduction

Eighteen degree water (EDW) is a subtropical mode water of the North Atlantic. Mode wa-
ter is a layer of water with vertically constant temperature and salinity. It often forms near
strong baroclinic fronts, which provide a mechanical forcing for its creation and properties,
in regions of high air-sea interaction, a buoyant forcing. Figure 1 shows the region of high
wintertime net heat flux, which corresponds with the location of the EDW. This region of
large heat flux is located near the Gulf Stream, a strong baroclinic front. Figure 2 shows the
mode water. The left panel shows the temperature and velocity in this region. The thick
layer of constant temperature can be seen here as well as the front from the Gulf Stream.
The center panel shows the constant salinity layer and the isopycnals, which clearly show
the mode water. The right panel shows the historical formation of the EDW predicted from
air-sea fluxes, which in recent times has ranged between 15 and 25 Sv [1]. But Kwon and
Riser inferred that 4 Sv is injected into the subtropical gyre[2]. The discrepancy between
the estimated and the observed values is currently under investigation. The goal of these
experiments is to investigate if lateral eddy fluxes by the eddies created by the baroclinic
front of the Gulf Stream could explain the discrepancy. In the current experiments, a baro-
clinic front was created via upwelling and a dense line plume was injected at the surface
to simulate the processes under which the EDW is formed. From hereafter, a line plume is
defined as a plume that is driven by a buoyancy flux per unit length on a line whose extent
in one horizontal direction is much larger than in the other horizontal direction, whereas a
point plume is emitted from a single point.

The EDW formation process was simulated as a line plume in a rotating linearly strat-
ified fluid. In a non-rotating flow, Rouse et al. examined the case of a line plume in a
homogeneous fluid[4]. Morton et al. developed a theory for convection for both continuous
and instantaneous point sources for an arbitrary stratification (including the homogeneous
case), with a detailed analysis for the linearly stratified case[5]. Wright and Wallace ex-
perimentally examined the behavior of a line plume in a linearly stratified fluid[6]. Other
previous experimental work on plumes in stratified fluids includes that of Noh et al. and
Ching et al., who examined respectively a thermal and a negatively buoyany turbulent line
plume descending through a two-layer fluid with a sharp density interface [7] [8]. Laboratory
experiments on the effect of rotation on a bouyant line plume in a homogeneous fluid were
conducted by Fernando and Ching[9]. Lavelle and Smith studied this effect numerically
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Figure 1: Wintertime net heat flux over the North Atlantic (Steve Riser, from John Mar-
shall, pers. comm.).
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Figure 2: Meridional sections across the Gulf Stream of temperature and velocity(left) and
salinity and potential density (center) (from Joyce[3]). The right panel shows the formation
rate of the subtropical mode water estimated from air-sea fluxes.
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using a three-dimensional nonhydrostatic model[10]. Fernando et al. performed laboratory
experiments on the development of a dense turbulent point plume in a rotating homoge-
neous fluid[11]. More recently, Bush and Woods experimentally investigated the vortices
produced by a buoyant line plume in both a homogeneous and a linearly stratified flow[12].
The rotating stratified case for a point plume has been studied by Helfrich and Battisti,
who conducted laboratory experiments studying the effect of rotation on a hydrothermal
plume[13], and Speer and Marshall, who conducted numerical experiments on the convection
produced by a buoyant point source in a linearly stratified fluid[14].

The previous work on plumes most relevant to the current study is the experiments
of Bush and Woods on a line plume in a rotating linearly stratified fluid. From their
experiments, they found that the height of intrusion of the plume was

Zn, = (3.0 ±• 1.0) (BIL)1/3()(.±.) N '(1)

where B is the total buoyancy flux, L is the length of the source, and N is the buoyancy
frequency (which is constant in a linearly stratified fluid)[12]. The coefficient is similar to
the value of 2.5 found by Wright and Wallace[6]. The reduced gravity of the intrusion in
their experiments was

S= gp - Pb (2)
Pb

where pi is the density of the intrusion and Pb is the density at the bottom of their tank
(where the injection occurred in their experiments). They did not measure the density of
the intrusion but predicted that it scaled as

gl(Zn) "- (BIL) 13 N_ (3)

Manipulation of their scaling for the size of the eddies formed by the plume gives an eddy
radius that scales as

Rpiume "- NZn/f,

where f is the Coriolis parameter.
Others have performed experiments investigating the eddies formed from fronts created

by upwelling. In these experiments the eddies are created by instabilities at the front. For
example, Narimousa and Maxworthy studied a two layer fluid where upwelling was forced
by a disk spinning on the surface of the fluid[15]. In these experiments they found the
velocity on the surface was

V = 0.74rAQ, (4)

where r is the radius of the disk and A• is the rotation rate of the disk (with respect to
the fluid). In other experiments, eddies were observed that scaled with the Rossby radius
of deformation:

R = NH/f, (5)

241



where H is the depth of the fluid[16].
The current experiments examined the effect of these eddies created by upwelling on

the dense plume injected into a linearly stratified rotating fluid.

2 Experiment

The experiments were conducted in circular tank with a diameter of 115 cm positioned in
the center of a 2 m rotating table. A disk with a radius r of 13 cm was suspended over
the center of the tank at a height of 31 cm above the bottom. The linear salt stratification
was created using the double-bucket method. The tank was filled while rotating until the
disk was resting on the surface of the water. During filling and spin-up, the tank was
covered with cellophane to minimize wind stresses. The tank rotated counterclockwise and
the disk rotated in the same direction. The dense salty water for the plume was dyed
green for visualization and injected via a perforated copper pipe ring that encircled the
disk. The pipe was covered in foam to evenly distribute the dense fluid. In contrast to the
experiments of Bush and Woods, a dense plume was injected at the surface rather than a
buoyant plume injected on the bottom. For each experiment, the dense water was injected
in 10 - 12 bursts of 20 - 30 seconds each. As discussed in Bush and Woods, there are
several "instability times" that define the number of eddies created from the plume. The
injection time was limited to the first instability time so that the eddies could be more easily
observed. The multiple injections also simulated the more realistic sporadic atmospheric
forcing that would create EDW. A conductivity probe measured the water column to get
density profiles during the experiments. A camera was mounted on the rotating table that
photographed the development of the plume from a sideview. A camera mounted above the
table that rotated at the same rate videotaped the plume from above. A syringe pump was
used to inject blue dye lines on isopycnals so that upwelling could be observed. Figures 3
and 4 show plan and side views of the experimental setup respectively. Figures 5,6, and 7
show photographs of the experimental setup. The variable parameters in the experiments
were the flow rate of the dense water Q (10 - 37.5 cc s-1), the reduced gravity of the dense
water g" (1.1 - 100 cm 8-2), the disk rotation AQ (0.149 - 3.190 rad s-1), the buoyancy
frequency N (0.205 - 1.022 rad s-1), and Coriolis parameter f (0.8 - 2 rad s-1 ).

Figure 4 also shows how the height of the eddies was determined. Geostrophy states
that the azimuthal velocity V is

V- g dh (6)

f dx'

where dh/dx is the slope of the isopycnals and is equivalent to S as depicted in Figure 4.
Rearranging and scaling g' as N 2H, V as rA/Q as in Narimousa and Maxworthy, and using
Equation 5, he can be scaled as

rAQ(
he=zSR- 2N (7)

Note the factor of 1/2. The velocity on the bottom was zero. In this scaling, the average
velocity, rather than the surface velocity, was the velocity of interest, so this factor was
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Figure 3: Plan view of the experimental setup.

added. Measurements of the slope from photographs (see Figure 8) show that the above
scaling for the slope is accurate within 30%.

3 Theory

The behavior of the dense plume is function of a combination of the vertical buoyancy flux
from the plume and the lateral eddy buoyancy flux due the eddies created by the upwelling

front. An appropriate scaling needs to be determined for both fluxes. The ratio of these
terms should provide insight into the plume behavior. The buoyancy flux is commonly
defined as

B = g'Q, (8)

where Q is the volumetric flow rate of the source and g' is defined here as

- Psource - Ptop98 =:g P (9)
Prop

where Psource is the density of the source water for the plume and Ptop is the density at the
surface of the tank, where the plume is injected.

The lateral eddy buoyancy flux can be written as

M = v'b' × 2r +R h (10)
2

where v'b' is the lateral buoyancy eddy flux per unit area. In this equation, the area through
which the flux acts is defined as the height of the eddies created via upwelling (see Figure 4)

times the perimeter of the circle through which the flux acts. Here this perimeter is defined
as the average between the circle created by the disk and the circle created by the eddies (of
radius R - see Figure 3) generated at the edge of the disk. Using a flux-gradient relationship,
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R AQ

he

S = he/R .

Figure 4: Side view of the experimental setup. The section shown indicates how the height
of the eddies was scaled.

Figure 5: Overhead view of experimental setup. In the foreground the pump that delivers
the source can be seen.
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Figure 6: Side view of experimental setup. In the foreground the syringe pump that was
used to inject dye lines for visualization of the upwelling can be seen.

Figure 7: View of the disk that is rotated to create upwelling and the piping that delivers
the source. The profiling apparatus for the conductivity sensor is seen to the left of the

disk.
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Figure 8: Upwelling in the current experiment. The upper photo shows the isopycnals
before the disk starts rotating and the lower panel shows the sloping of the isopycnals.
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v'b'= -KVb, (11)

where K is an eddy diffusivity. The eddy diffusivity can be described as

K = cVR, (12)

where c is an eddy efficiency parameter. Cenedese et al. and others found that the value of
the eddy efficiency parameter ranged between 0.01 and 0.06[17]. In the current experiments
a value of c = 0.05 was used. Vb can be scaled as -Ab/R, where b is assumed to change
over the lengthscale R. Assuming Ab scales as N 2H (or g') and using Equation 12, the
lateral buoyancy flux per unit area is

v'b' = cVN 2 H (13)

Using Equations 5 7, and 13 and the scaling for V from Narimousa and Maxworthy
(including a factor of 1/2 as stated above), Equation 10 can be rewritten as

NH -N 2 (14)M=_T~(rAQt)2NH 2r+ NH(14

4 f
In the current experiments the effect of the ratio B/M on the plume behavior was

examined:

B g'Q (15)

M c- (rAQ)2 NH 2r+ ±NH

It was hypothesized that when BIM < 1, there would be a significant lateral buoyancy
flux would overwhelm the vertical buoyancy flux; when BIM = 1, the source and lateral
eddy flux have similar strength so they are both relevant for plume dynamics; and when
B/M > 1, the plume would behave as in the experiments of Bush and Woods due to the
negligible value of the lateral eddy flux. It was also hypothesized that an effective vertical
buoyancy flux, which would account for lateral eddy flux could be defined as

B* = B- M, (16)

which can be rearranged to give

M
B*=B 1-- . (17)

B

4 Results

First, the plume behavior was qualitatively analyzed. Overhead video of the experiments

showed a distinct difference in the size of the eddies between the experiments with and
without upwelling (with all other parameters held constant). First, the base case with
no upwelling is examined. Figure 9 shows the plume (in green) after the first injection
of dense fluid (upper photo) and after five injections (lower photo). The eddies formed
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from the injection can clearly be seen in the upper photo. After several injections a thin
layer formed. Figure 10 compares the base case with no upwelling (upper photo) with the
upwelling case (lower photo). The eddies created by the upwelling affect the plume by
causing it to mix as it sinks, resulting in a thicker mixed layer whose midpoint is not as
deep as that formed with no upwelling. The eddies essentially increase the entrainment of
the ambient fluid into the plume as it descends.

The measured density profiles provided a mechanism for a quantitative analysis of the
intrusion of the plume. In the current experiments, the depth of the midpoint of the
intrusion, the average density of the intrusion, and the thickness of the intrusion were
investigated as a function of BIM. Figure 11 shows a typical density profile after the
injection of the plume (without upwelling). The plume creates a step in the background
density profile, which would be expected based on comparison with the upper photo of
Figure 10. Figure 11 also shows the depth that Equation 1 predicts the plume will descend
to. Note that this distance was assumed to start at the bottom of the mixed layer that
formed on the surface, perhaps due to wind stresses or surface stresses exerted by the disk.
The density of the step was used to define a g' for the step (with the respect to the density
at the surface). Figure 11 also shows how the thickness of the step, AZ, was defined.
Figure 12 shows a typical density profile for the same B as in Figure 11, but now with
upwelling. The depth predicted by Bush and Woods is still shown. It is apparent that
the plume did not descend as deep as in the case without upwelling. The intrusion was
also much thicker. Comparison with the lower photo in Figure 10 confirms that the plume
mixed more as it descended when upwelling was present. Figure 13 combines the typical
profiles of the background, the intrusion without upwelling (plume), the background with
upwelling, and the intrusion with upwelling (upwelling). The important thing to note is
the differences in the structure of the density step with and without upwelling. Another
important fact is that the background density profile does not change dramatically once the
upwelling begins.

Figure 14 shows the measured depth of the midpoint of the intrusion plotted in dimen-
sionless form using the scaling of Bush and Woods (Equation 1). Note that for the points
where there was no upwelling, M was taken to be 1, although in reality it is 0 and the
value of B/M at these points is infinite. The points with the lowest values of B/M were
discarded because the midpoint of the intrusion was less than the depth of the mixed layer
at the surface after upwelling started but before the plume was injected. Hence it was not
possible to discern between the mixed layer and the intrusion. The figure shows the depth
of the mixed layer for each experiment. An attempt was made to determine a relationship
between the depth of the midpoint and B/M. The relationship needed to asymptote to a
constant value as B/M went to +oo in order to match the results of Bush and Woods and
tend to zero as B/M got smaller. The data was fit to a form

(B/L) 3 = Clexp (-C 2M/B), (18)

where C1 and C2 are constants that were determined to be 2.6 and 0.02, respectively. The
value of 2.6 is the asymptote that the data approaches as B/M becomes infinite, which is
the same condition as the experiments of Bush and Woods. The value of 2.6 is smaller than
their average value of 3.0, but within their stated range. The current value is also very
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Figure 9: Behavior of a plume with no upwelling (B 400 cmn4s-3) after one injection
(upper photo) and five injections (lower photo).
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Figure 10: Comparison of plume behavior in the plume only case (upper photo) and the
plume in the presence of upwelling (lower photo). All the parameters were the same between
the two photos and they were both taken after five injections. B/M = 0.02 in the lower
photo. The purple potassium permanganate on the bottom of the lower photo shows the
upwelling.
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Experiment 4 - Injection 4
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Figure 11: Density profile for a plume with no upwelling (B = 220 cm 4 s-3). The definition
of the density step is shown as well as the depth of the intrusion as predicted by Bush and
Woods. Profile 1 is the background density profile before injection. In this experiment the
mixed layer is seen to extend to 26 cm.
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Experiment 5 - Injection 4
35

34 -Profilel
33 - Profile 2
32.... Profile 12
31 ....... . . .r"

3 0
29 -
28
27 .
26
25
24 "
23 "
22 AZ
21
20

E 19 -BiW99
18

t 17
16
15
14
13
12
11

9
8
7 "
6
5
4
3
2
1

0.998 0.999 1 1.001 1.002 1.003 1.004 1.005 1.006 1.007

Density(g/cm
3
)

Figure 12: Density profile for a plume with upwelling (B/M = 0.02). Profile 1 is the
background density profile before injection and prior to starting the disk. Profile 2 is the
density profile after the disk was started but prior to injection.
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Figure 13: Summary of typical density profiles seen in the current experiments.
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Figure 14: Depth of the intrusion due to the plume. The circles indicate the measured
depth and the triangles indicate the depth of the mixed layer. The predicted value of the
dimensionless depth from Bush and Woods is shown as a solid line with its margin of error
showed as dashed lines. The data points with crosses indicate the points with no upwelling,
and hence an infinite B/M.

similar to the value of 2.5 found by Wright and Wallace for the nonrotating case. In general
the depth of the intrusion decreased with decreasing B/M, which is compatible with the
hypothesis that as M increases the plume mixes more quickly and thus does not descend
as deeply.

Figure 15 shows gý of the step normalized by the scaling of Bush and Woods (Equation 3).
While there was much scatter in this data, there was a general increase in the dimensionless
reduced gravity with B/M. This was the expected trend because as B/M decreased, the
plume did not descend as deep, thus the density at its neutral level was closer to the density
at the surface.

Figure 16 shows the thickness of the step normalized by the predicted height of the
eddies created by the upwelling from Equation 7. Note that the experiments that had no
upwelling are excluded from this figure because he is undefined in these experiments. For
B/M < 1, the normalized thickness was essentially constant. This is consistent with the
eddies from the upwelling having a great effect on the plume behavior in this regime. As
B/M increased, the eddies had less of an effect on the structure of the intrusion. This is
confirmed by examining the dimensionless thickness as a function of B and M individually.
Figure 17a shows that there was no obvious dependence on B. Figure 17b shows that the
trend observed in Figure 16 is due to changes in M. Hence, the thickness of the step was
correlated with the strength of the lateral eddy buoyancy flux for B/M < 1.

Lastly, the proposed effective buoyancy flux from Equation 17 was evaluated. The
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Figure 15: Reduced gravity of the intrusion with respect to the surface density.
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Figure 16: Thickness of the intrusion.
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Figure 18: Comparison of the predictions of the intrusion depth using the standard buoyancy
flux as defined in Equation 8 and the effective buoyancy flux defined in Equation 17. The
dashed line indicates the line of equality between the measured and predicted values. The
data points with crosses indicate the points with no upwelling and hence B* = B. Note
that the points along the x-axis are due where the effective buoyancy flux is not valid.

theoretical intrusion depth was computed using the scaling of Bush and Woods with a
coefficient of 2.6 instead of 3.0 to better fit the current data (see Equation 1). Figure 18
compares how the scaling performs with B as defined in Equation 8 and B* as defined in
Equation 17. Note that one limitation of this formulation is that it is not valid for B/M < 1,
which limits its application when the lateral eddy buoyancy flux is expected to dominate.
For the remaining points, in general there is an improvement when using the prediction
with the effective buoyancy formulation.

5 Discussion

To gain insight into the formation of EDW, the ratio B/M in this region was computed.
From the heat flux in Figure 1, the buoyancy flux per unit area was determined to be 10-7

m 2 s-3. From this figure, the surface area (SA) over which this flux acts was measured to
be 1000 km by 200 km. A typical velocity for the Gulf Stream is 1 ms- 1 and a typical
depth over which the gulf stream acts is 1 km. The Rossby radius of deformation in this
region is on the order of 100 km. The value of N/f in this region ranges between 30 and
100, so typical stratifications are between N = 3 x 10-3 and 10-2 s-1. The cross sectional
area (CSA) through which the lateral eddy buoyancy flux moves is the length of this zone
times the depth of the gulf stream. So
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B = B/area x SA 2 x 104 m4 S-3

M = cVN 2 H x CSA 2 - 5 x 10 6 m 4 S-3

giving a value of BIM = 4 x 10-3 to 10-2. Based on the current experiments, the EDW zone
falls into the regime where eddies from the Gulf Stream dominate and the properties of the
plume were not important. The effective buoyancy flux formulated above could not be used
here because of the low value of B/M. While the EDW falls into this regime, interestingly
even the Bush and Woods scaling, which does not account for the lateral eddy fluxes,
underestimated the depth of the the EDW, predicting a depth of 80 - 270 m (depending on
N/f). The EDW is typically seen between 200 and 500 m, so towards the lower end of the
ratio of N/f, predictions approach the observations. Note that in the current experiments,
N/f ranged between 0.1 and 1. Another possible explanation for the shallower intrusion
depth predicted could be due to the use of a seasonally averaged buoyancy flux on the
surface. Using a time averaged buoyancy flux through an entire experiment reduced the
B/M values from the lab by a factor of 100, putting the estimated values from the ocean
in the middle of the range investigated in the experiments. It is not clear if this is more
physically appropriate, as the instantaneous plume properties may be what controls the
intrusion behavior, not the time averaged plume properties.

6 Conclusion

Laboratory experiments were conducted to investigate behavior of a dense plume in a rotat-
ing linearly stratified fluid in the presence of eddies created by a baroclinic unstable front.
The purpose of the experiments was to simulate the formation of Eighteen Degree Water to
gain insight into the properties of this mode water. The vertical and lateral eddy buoyancy
fluxes were estimated and their ratio, B/M, used to determine properties of the intrusion
formed from the plume. The depth of the intrusion was found to be smaller in the presence
of eddies from the baroclinic front. An effective buoyancy flux was defined that improved
predictions of the depth of the intrusion as long as B/M > 1. Further analysis of the scaling
for B and M is necessary before application to Eighteen Degree Water can be successfully
made.
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Experimental study of double diffusive gravity currents under

rotation

Marshall Ward

1 Introduction

It is well known that when light and heavy fluid are adjacent to each other, there is an
unbalanced pressure gradient that triggers an adjustment process towards equilibrium, so
that the light fluid finds its way atop the heavy fluid. This dam-break or lock-exchange
problem has been analyzed in great detail for laminar flow (e.g. [1]), though the turbulent
situation is perhaps not nearly as well understood. But in either case it is clear that, during
adjustment, the light fluid will be pushed upward, with the heavy fluid similarly pushed
downward, in the form of a hydraulically-forced gravity current. The process, however,
becomes more elaborate when the lateral density gradients vary over long lengthscales.
Nearly all large-scale terrestrial phenomena, from river outflow to large-scale oceanic gyres,
feel the influence of the Earth's rotation, and this drastically alters the adjustment process.
To complicate matters even further, the presence of both heat and salinity distributions
in the oceans can lead to buoyantly stable density profiles that are nonetheless double
diffusively unstable, and is most prevalent when foreign water intrudes as a gravity current
into another part of the ocean. Two potential examples of this are the Mediterranean
outflow into the North Atlantic and the various boundary currents of the Arctic Ocean,
both of which are intrusions of warm salty water into a cold, fresher background; such
intrusions also tend to be steered by the topography for some distance. To estimate the
role of these intrusions accurately, it is necessary to understand the underlying processes
and how they can interact to influence gravity current formation and propagation.

One of the earliest complete analyses of nonrotating gravity currents is due to Ben-
jamin [2]. A major result of his study is that a frictionless gravity current, once established,
will propagate at a constant speed of c = V2g'hb, where g' is the reduced gravity and hb
is the lower fluid depth. It was also shown that, far upstream of the front, the thickness
of the lower fluid will occupy only half of the total depth. If friction is introduced, the
bottom height may become smaller. Experimental work on nonrotating gravity currents
by Rottman and Simpson [3] has shown that, in the early stages, the displacement of the
front is linear in time, so that the speed is indeed constant. At later times, speeds begin to
slow and the displacement curve obeys a power law of either t2/3 if there is an interaction
with the end of the tank, or t 1 /5 if viscous effects dominate; the time and nature of such a
transition depends on the Reynolds number of the current, though in all cases the viscous
profile eventually dominates.
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The formation and evolution of a gravity current under the effects of rotation has been
studied extensively, and has been reviewed by Griffiths [4]. The classic geostrophic ad-
justment problem of Rossby [5] was extended to a rotating channel flow by Gill [6], who
considered the adjustment of two semi-infinite channels filled with fluid of infinitesimally
different heights and separated by a barrier. Using linearized dynamics, it was shown that,
for a channel of width larger than, but still comparable to, the radius of deformation, the
adjustment process is initially driven by the propagation of gravity waves, just as for a
nonrotating fluid. But after an inertial period of 2rf- 1, where f is the Coriolis parameter,
a semigeostrophic balance is established and the adjustment process is then dominated by
the propagation of coastal Kelvin waves away from the location of barrier release. Since
these waves travel along the boundaries in opposite directions, with the coast to the right
of the direction of propagation (for f > 0), they give rise to gravity currents that hug the
coast in a similar manner. This analysis has been extended to the case of finite difference
of fluid height in a number of later studies (e.g., [7, 8]). The result of Benjamin mentioned
earlier was generalized to rotating currents by Stern, Whitehead, and Hua [9], who found
that the speeds of these currents are also constant, but that, because certain quantities re-
main indeterminate without a more rigorous analysis, the estimate for c becomes an upper
bound.

Although the dynamics of gravity currents, both in the absence and presence of rotation,
are understood in some detail, there has been less focus on how they are influenced by
double diffusion. Laboratory experiments have shown that, for fluids with compensating
temperature and salinity gradients, double diffusive effects can induce intrusions into each

fluid, in the form of interleaving patterns [10, 11]. The effect of shear on the magnitude
of the interfacial density flux has also been considered [12]. But direct studies of double
diffusive gravity currents are few. Maxworthy [13] provided the first thorough experimental
study of such currents, focusing on two-layer experiments of both constant flux and constant
volume. He considered currents whose layer density differences were on the order of 10-3

to 10-2 g cm- 3, many times larger than in the study presented here. At early times, these
currents exhibited behavior common to strongly inertial nondiffusive currents, such as the
formation of a bulbous head and a constant frontal propagation rate (i.e. head speed).
The propagation rates also did not differ noticeably from nondiffusive currents of the same
density difference. At later times however, the heads would narrow to sharp peaks and, in
the case of a finger favorable current, strong convection would begin, carrying heavy fluid
downward and leading to the formation of a second, bottom gravity current. The speeds
would also drop dramatically at this stage, and in some cases would stop completely.

Yoshida, Nagashima, and Ma [14] approached this problem from a different perspective
by noting that a double diffusive mass exchange across the interface should increase the
layer density difference over time, and thereby accelerate the gravity currents in some way.
They suggest that the layer density differences considered by Maxworthy were too large to
notice such a change, and so they looked at the evolution of double diffusive gravity currents
with density differences that were at least an order of magnitude smaller. They were able
to demonstrate that the double diffusive currents are notably faster than the nondiffusive
ones. But because of the indirect method used to specify the density of each layer, they
were unable to make a direct comparison between, say, finger favorable and nondiffusive, but
otherwise identical, currents. They also showed that the finger favorable currents produced
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a secondary bottom current, similar to those observed by Maxworthy.
In this study we follow an approach similar to that of Yoshida et. al. by using density

differences on the order of 10- 4 g cm- 3 , though we also reduce the fluid height. While this
makes our currents more susceptible to frictional effects, the small initial density differences
and low speeds also make them highly sensitive to double diffusive fluxes. In Section 2 we
describe our laboratory setup and the experiments performed. Sections 3 and 4 contain
our results for the propagation rate of the fronts and their lateral spread. Analysis of the
results, with a focus on the small-scale structure, is provided in Section 5. Conclusions and
suggested areas for future work are discussed in Section 6.

2 Experimental Setup

2.1 Apparatus

Two sets of lock-exchange gravity current experiments were performed at the Woods Hole
Oceanographic Institution. Both used an acrylic tank of dimensions 60cm long, 10cm
wide, and 20cm high, with a barrier located at the center (30 cm) point. The first set of
experiments were done for a nonrotating system, and the setup is denoted schematically on
Figure 1. The second set utilized a rotating table, shown in Figure 2.

For each lock-exchange experiment, two solutions of different densities and concentra-
tions were prepared, using salt and sugar as our fast and slow diffusers1 . The densities for
each solution were specified by first adding the amount of solute prescribed by Ruddick
and Shirtcliffe [15]. We then refined the density by dilution or addition of solute, based
on measurements from an Anton Paar DMA58 density meter. This allowed us to attain
the desired density within 10- 5 g cm- 3. All solutions were prepared from storage vats of
distilled water, which were given sufficient time to adjust to room temperature.

Each run required 500 ml of a designated "light" fluid of lower density and an equal
amount of "heavy" fluid of higher density. Unless specified otherwise, the light fluid was
dyed with blue food coloring, whose effect on density was taken into account. The fluids were
poured into opposite ends of the tank, which were separated by a movable barrier. We then
verified that the fluid heights on the two sides were equal, correcting each level if necessary.
For the rotating cases, we allowed for 10 minutes of spinup time to let the system reach
equilibrium. After the system settled, the barrier was then quickly but carefully removed,
with as little disturbance to the fluid as possible, and the gravity current was allowed to
develop.

2.2 Visualization

Two methods of visualization were used during these experiments. For observation of the
vertical structure, a minimal amount of blue food color dye (less than 0.1 ml) was added to
the lighter fluid to distinguish the individual fluid layers. A shadowgraph, illuminated by a
projector light source, allowed for resolution of the small-scale double diffusive features. For
the lateral structure of the rotating currents, 2 ml of food color dye was used to highlight
the structure of the current profile. In both cases, images were collected with either a

'The diffusivities of salt and sugar in water are 1.5 x 10-5 and 0.5 x 10-5 cm 2 sec-', respectively.
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Figure 1: Experimental Setup for Nonrotating Experiments
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Figure 2: Experimental Setup for Rotating Experiments

263



black-and-white video camera for lower resolution video capture, or a digital still camera
for higher resolution image analysis.

For most experiments, the overhead cameras track the propagation of the gravity current
along the upper fluid surface. However, as mentioned before, currents with finger favorable
profiles can produce secondary bottom currents that can, in more extreme cases, become the
dominant gravity current and may tend to contain most of the dyed fluid. Our visualization
methods will therefore track the bottom current in these situations. For such cases, it was
confirmed that the top and bottom currents propagate at the same speeds however, so that
for the purposes of speed comparison it is sufficient to track either current.

2.3 Experimental Parameters

Table 1 shows the physical parameters of the experiments to be discussed. The first row
refers to the double diffusive process that one would expect from each experiment. For
example, if we consider an experiment where light sugar water will flow above heavy salt
water, then we would expect fingers to form. Such currents are referred to as finger favorable
(hereafter FF) currents. Similarly, a flow with light salt water over heavy sugar water would
be expected to form a diffusive layer, and the currents are said to be diffusive layer favorable
(hereafter DF). We would not expect any significant diffusive behavior if both fluids contain
only salt, or only sugar.

Table 1: Experimental Parameters
Parameter Values

Double Diffusive Tendency Fingers, Diffusive Layers,
or Single Component

Rotation Rate (f) 0.0 or 1.0 rad sec-1

Prospective Difference (Ap) 5.0 x 10-4 or 1.2 x 10-4 g cm-3

Mean Density (p) 1.02 or 1.04 g cm-3

Fluid surface height (h) 1.7 cm

Table 2: Physical and dimensionless parameters (U : 0.03-0.15 cm sec-)

Parameter Ap = 0.0005 Ap = 0.00012
c = Vgh 0.91 cm sec-1  0.44 cm sec 1

L = c/f 0.91 cm 0.44 cm
Fr = U/c 0.03-0.16 0.07-0.34

Ro = U/f L 0.03-0.16 0.07-0.34
Re = Uh/v 5.1-25.5 5.1-25.5

We also consider the effects of rotation, density difference between layers, and solute
concentration of the fluids. We specify the rotation rate in terms of the Coriolis parameter,
f = 2Q, where Q is the true rotation rate of the table. The density difference between
layers is established during preparation of the fluids, in the manner described before. The
mean density is equivalent to solute concentration. The fluid height h results from the use
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Gravity Current Head Displacement, p = 1.00, Ap = 0.00050, One Component
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Figure 3: Effect of rotation on a nondiffusive current with a large Ap

of 1000 ml of fluid in our particular tank. A complete set of the experiments performed is
shown in Tables 3 and 4, shown at the end of this manuscript.

Table 2 gives some estimates for the dynamical and dimensionless parameters of our
experiments, based on empirical observations of gravity current head speeds of 0.03-0.15 cm
sec-1. The dynamical parameters, c and L, are the estimates for the (shallow water) gravity
wave speed and Rossby radius of deformation, respectively. The dimensionless parameters
are estimates for the Froude, Rossby, and vertical Reynolds numbers of our experiments.
We see that Froude and Rossby numbers are small, and so we should expect some sort of
geostrophically or quasigeostrophically balanced flow, with rapid adjustment by the internal
gravity waves. Reynolds numbers are, however, only modestly large, so we can only presume
that viscous effects will play a significant role in the dynamics of the gravity currents.

3 Frontal Propagation

In this section we provide a quantitative description of the propagation rate of the interfacial
front of a two layer double diffusive gravity current, and its variation in response to the
following effects: rotation, double diffusive tendency, density difference between layers, and
solute concentration.

3.1 Rotation

We first consider the response of a current to rotation. The head speed of a single component
current with and without rotation is shown in Figure 3. The plot shows that there is close
agreement between the two curves during the intermediate period of 50-200 sec, but there
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Figure 4: Same as Figure 3, for a FF current
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Figure 5: Same as Figure 3, for a DF current

266
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Figure 6: Effect of double diffusion on a nonrotating gravity current with large Ap

Gravity Current Head Displacement, p = 1.02 (p = 1.00 for One Component), Ap = 0.00050, f = 1

Finger Favorable o
Diffusive Layer Favorable A

One Component
30 v• 6

300
A 0

A 0
'0

25 
A 0

A * 0
A V 0

E
0

20 4 o0
Li z 00

E 0 o

o ' 0a 15  
A 0

or 00

0

10

0

A 0

0
0 iiii I

0 50 100 150 200 250 300 350 400

Time (sec)

Figure 7: Same as Figure 6, with rotation

267



is a noticable discrepancy at later times, particularly as the gravity current reaches the end
of the tank.

Figure 4 shows that there is also close agreement between the rotating and nonrotating
curves for the FF gravity currents. The agreement is even better between the DF currents,
shown in Figure 5. In both cases, the curves appear to be piecewise linear, with transitions
occurring after about one minute. This is somewhat expected, since frictionless currents
have been shown to propagate at constant speeds [2, 9]. But it is surprising that this
particular state would dominate for so long, since our Reynolds numbers are not very large
and viscosity would be expected to have a substantial influence on the propagation, as
shown by Rottman and Simpson [3].

In all three scenarios, we find that there is reasonable agreement between the head speeds
of rotating and nonrotating gravity currents. This is an indication that the fluid velocities
perpendicular to the current motion, and resulting Coriolis forces along the current, are
small and have little effect on frontal propagation. Consequently, the dynamics along the
current are largely inertial, with the acceleration driven by a lateral pressure gradient and
modified by viscous forces. And since speeds are much larger in the direction of the current,
the Coriolis forces are significant in the direction perpendicular to the current propagation
and we would expect a crossfiow geostrophic balance. This is demonstrated by the formation
of a boundary current in all rotating cases, such as those in Figures 13-18.

3.2 Double Diffusive Tendency

Figures 6 and 7 demonstrate, in the absence and presence of rotation, respectively, the
behavior of gravity currents that have different double diffusive profiles but are otherwise
equivalent. In both plots, the double diffusive gravity currents are significantly faster than
the nondiffusive ones. For the rotating cases, there are intermediate regimes where the
speed profile appears to be approximately linear.

If we focus on Figure 7 but appeal to the linear fits of the intermediate regimes of the
same curves that appear in Figures 8, 9, and 10 (namely, the curves for large Ap in each
plot), then we see that the DF currents are 33% faster than the nondiffusive currents, while
the FF currents are only about 13% faster. The greater speeds of the double diffusive
currents are most likely a consequence of the increasing density difference between layers
over time. This can in principle lead to a stronger acceleration and larger head speed.

3.3 Density Difference Between Layers

The most dramatic behavior in head speed is exhibited by variation of the initial density
difference between layers. Hereafter, we will restrict our attention to data from rotating
experiments. We also use curve fitting to estimate the head speeds for some of the observed
linear regimes. While this method is somewhat subjective because it is not always clear
where the linear regimes begin and end, it provides a quantitative estimate for comparative
purposes.

Figures 8, 9, and 10 demonstrate two general responses to changes of initial layer den-
sity difference, the first being that the strong initial surge associated with large density
differences is much weaker, if it occurs at all, when the density difference is reduced. The
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Figure 8: Effect of layer density difference on a nondiffusive current with rotation

second, more predictable, result is that head speeds become larger as density differences are
increased.

Figure 8 illustrates a dramatic feature which is observed only in nondiffusive currents.
We see that when the density difference is very small, the head speed is initially much less

than the gravity current with a larger density difference. But after about two minutes,
this slower current begins to separate from the wall and the speed increases dramatically.

Evidence of this separation can be seen in Figure 16. The table corresponding to Figure 8

shows that the speeds of the currents in the two cases are in fact comparable. Some speedup

after separation is expected, since there should be less viscous drag along the sidewall. But

it is surprising that the speedup would be so dramatic, and that it would match the speed
of the current with a larger density difference.

Such separation is not observed among the double diffusive currents. Figure 9 shows the

evolution of FF gravity currents with large and small initial density differences. At early
times (until about the first minute), the current with a large density difference is relatively
fast, while the current of small difference appears to be much slower. At later times we

have more predictable results, with the larger Ap producing currents that are about 50%

faster than the smaller Ap, as we see from the table below Figure 9.
Figure 10 and the corresponding table show that the DF currents exhibit some behavior
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Figure 9: Effect of layer density difference on a FF current with rotation

that is similar to the FF case. However, there are some notable distinctions between the
FF and DF currents when the density difference is small. After the first two minutes, this
current's speed is nearly the same as the one with a large initial density difference. It is
only after about five minutes that there is an abrupt reduction in speed, so that the current
with a large difference is nearly 66% faster than the current with a small difference.

In both cases the currents have greater head speeds when the initial density differences
are larger, but the speeds do not scale like vAp, which one might expect from dimensional
arguments or comparison to theoretical results [2, 9]. One possible reason for this is that
the head speed is nonzero even when Ap is initially zero, which has been demonstrated in
previous studies [16], and is a consequence of increasing density difference over time.

3.4 Solute Concentration

Figure 11 and the corresponding table show that, after a two minute adjustment period,
the FF current with a higher solute concentration is more than 50% faster than the current
of lower concentration. Both currents also appear to undergo a transition at roughly the
same time. The effect is similar for the DF current, shown in Figure 12, which appears to
approach its dominant speed more rapidly, occurring after about a minute. The higher con-
centration current is also nearly 50% faster than the lower concentration one, and resembles
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Figure 10: Effect of layer density difference on a DF current with rotation

the behavior of the FF current.
Our results demonstrate that solute concentration can be as significant of a factor as

the density difference when the density differences are very small. Just as a stronger con-
centration gradient will typically drive a greater diffusive flux, in a Fickian sense, it is not
surprising that double diffusive fluxes across the interface will also be intensified in the
presence of stronger solute gradients.

4 Current Structure

We now focus on the lateral structure of the currents. In all cases where rotation is involved,
coastal currents are formed, shown in Figures 13, 14, and 15 for a density difference of
approximately 5 x 10-4 g cm-3. The most distinguishing feature of the double diffusive
currents (shown in Figures 14 and 15) is that the shear-like protrusions associated with the
nondiffusive fronts are no longer present. Such protrusions were first studied by Stern [17],
and a more recent investigation has been conducted by Stern and Chassignet [18]. While
the diffusive currents often exhibit a wavy interface, there is no sign of the sharp crests
observed in the nondiffusive current. There is also a noticable lateral spread, resulting in a
broadening of the double diffusive currents as compared to the nondiffusive ones.

This spread is even more pronounced for currents where the density difference has been
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Figure 11: Effect of solute concentration on head speed of a FF current

reduced by a factor of four, shown in Figures 16, 17, and 18. It also appears that these
currents tend to retain any vorticity that forms during barrier release for a much longer
time; this is most evident in Figure 17. And as discussed earlier, the nondiffusive currents
with small density difference tend to separate from the wall, observable in Figure 16. This
is not seen in the double diffusive currents, and may be a consequence of the lateral spread.
In any case, it is clear that double diffusive fluxes, and the changing density difference with
time, are responsible for these differences.

5 Internal Flow Structure

Without an accurate means of measuring the density field over time, it is difficult to diagnose
the influence of double diffusion on the gravity currents with great confidence. Nonetheless,
observations provide clues about the flow structure and the dynamical processes behind
them.

We first consider the flow of a DF current. From shadowgraph observations, we observe
that, for a gravity current propagating to the right, there is a strong clockwise shear in
the vicinity of the diffusive layer, with weaker counterclockwise shears within each layer.
A vertical cross section showing the flow profile is given in Figure 19, and photographs
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Figure 12: Effect of solute concentration on head speed of a DF current

of a typical current are shown in Figure 22. We expect that diffusive transport across

the layer will carry salt downward, making the fluid just above the layer lighter and the

fluid just below it heavier. If the rate of diffusive transport is reasonably slow, then we

would not expect an onset of convective mixing but instead an organized, buoyantly induced

upward transport of lighter fluid along the interfacial slope in the top layer, and a downward

transport of heavier fluid in the bottom layer. The increased flow rate would then lead to a

greater gravity current speed. In general though, this induced flow will probably be greater

than the increased frontal propagation rate, so that the current will reverse direction near

the front. This would result in the counterclockwise shear flows within each layer, though

the lower layer shear would be significantly reduced by bottom friction. Such shears would

also be expected to induce mixing within each layer.
The evolution of a gravity current under a FF stratification is markedly different. The

initial protrusion of the gravity current is illustrated in Figure 20. There should be an

initial period of finger formation along the front, with freshened salt water moving upward

and a salt-sugar mix moving downward. After these fingers penetrate deeply into each

layer, they will eventually become unstable and induce local convective mixing near the top

and bottom of the fluid. This will eventually lead to the creation of a very fresh solution

atop, with the original sugar and salt solutions inbetween, and a very heavy salt-sugar

solution at the bottom, shown schematically in Figure 21. The actual flow will not have

the clear boundaries shown in this figure; the density variation will be more continuous
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3 cm

Figure 13: View from above of a rotating, nondiffusive gravity current, four minutes after
release of the barrier; each tick on the scale represents one centimeter

3 cm

Figure 14: Same as Figure 13, for a FF current

S~3 cm

Figure 15: Same as Figure 13, for a DF current
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3cm

Figure 16: View from above of a rotating, nondiffusive gravity current, four and a half
minutes after release of the barrier.

3cm

Figure 17: Same as Figure 16, for a FF current

~3 cm

Figure 18: Same as Figure 16, for a DF current
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Figure 21: Schematic of a FF current after induced mixing
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Figure 22: Evolution of a DF gravity current
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Figure 23: Evolution of a FF gravity current
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Figure 24: Topview profiles of rotating DF (left) and FF (right) gravity currents with a

large density difference and small concentration

and the regions will be not be as well-defined in the presence of convective mixing. But

after the fluid settles, this activity would result in the formation of two gravity currents,

both a very light current atop and a heavy current along the bottom, as reported in prior

experimental studies [13, 14], and is most pronounced when the density differences are very

small and solute concentration is large. Photographs illustrating this process are shown in
Figure 23. In such cases, the top current is nearly invisible and the bottom current is the

dominant structure, making it appear that the light and heavy fluids have switched roles.
The bottom current is presumably DF, while the top may be weakly FF. Figure 24 clearly

shows the presence of fingers atop of a FF current with large density difference and small

concentration, supporting this hypothesis.

6 Conclusions and Future Work

In this study we have attempted to determine the role of double diffusion and rotation
on gravity currents by examining their response to various double diffusive profiles, initial

density differences, and solute concentrations. Double diffusive currents exhibited a greater

head speed than nondiffusive currents that were otherwise identical, with the DF currents

being faster than the FF currents, which is consistent with previous studies. We also find

that head speeds increase when the density difference and solute concentration between

layers become greater. The head speed is therefore much more complicated than for a

nondiffusive current; very large density differences in previous studies that were at least

an order of magnitude greater than in the present study produced currents that scaled like

Vp, while for the currents presented here, Ap is clearly increasing with time and the speed
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does not scale simply like the initial density difference. This fact, along with the increased
sensitivity to concentration, suggest that double diffusive fluxes can play a significant role
in frontal propagation of gravity currents. In any case, the head speeds are observed to be
independent of rotation, regardless of the relative importance of double diffusion.

Rotation has the greatest effect on the lateral structure of these currents. Boundary
currents form in all rotating cases, but the structure is greatly modified by double diffusion.
The shear-like crests associated with the nondiffusive rotating currents are no longer present
when the density profiles are double diffusive. Wall separation, which seems to be associated
with very small density differences in nondiffusive currents, does not seem to occur. In
addition, the crossflow spread is much greater when double diffusion is introduced. This
spreading, undoubtedly due to the double diffusive fluxes and associated increase of Ap, may
very well be responsible for the reduction of frontal instabilities and lack of wall separation.

To better understand the dynamics behind propagation of the fronts and their lateral
structure, especially concerning the formation of instabilities and rate of spread, a robust
scale analysis that, incorporates the density difference and solute concentration into the
double diffusive flux is required. Further experiments should also be conducted to establish
the sensitivity of the currents to these parameters. Finally, the role of viscosity must be
resolved. A simple theoretical treatment of certain idealized flows would help greatly in all
of these efforts.

7 Acknowledgements

This project would not have been possible without George Veronis, who not only suggested
the topic but also provided continuous guidance in both the laboratory and the subsequent
discussions. I will always remember our many conversations together, and I may have even
learned to enjoy softball. I am also grateful to Keith Bradley for his time and effort in setting
up the more elaborate parts of the experiments, and teaching me how to do the rest. I also
want to acknowledge helpful discussions with Karl Helfrich and Jack Whitehead. Finally,
I want to thank all of the GFD summer program staff and other fellows for providing me
with an incredible educational opportunity and happy memories of my time here.

References

[1] J. J. Stoker, Water Waves (Interscience, New York, 1957).

[2] T. B. Benjamin, "Gravity currents and related phenomena," J. Fluid Mech. 31, 209
(1968).

[3] J. W. Rottman and J. E. Simpson, "Gravity currents produced by instantaneous re-
leases of a heavy fluid in a rectangular channel," J. Fluid Mech. 135, 95 (1983).

[4] R. W. Griffiths, "Gravity currents in rotating systems," Ann. Rev. Fluid Mech. 18, 59
(1986).

[5] C. G. Rossby, "On the mutual adjustment of pressure and velocity distributions in
certain simple current systems," J. Mar. Res. 1, 19 (1937).

280

L



[6] A. E. Gill, "Adjustment under gravity in a rotating channel," J. Fluid Mech. 77, 603
(1976).

[7] A. J. Hermann, P. Rhines, and E. R. Johnson, "Nonlinear Rossby adjustment in a
channel: beyond Kelvin waves," J. Fluid Mech. 205, 469 (1989).

[8] K. R. Helfrich, A. C. Kuo, and L. J. Pratt, "Nonlinear Rossby adjustment in a channel,"
J. Fluid Mech. 390, 187 (1999).

[9] M. E. Stern, J. A. Whitehead, and B.-L. Hua, "The intrusion of a density current along
the coast of a rotating fluid," J. Fluid Mech. 123, 237 (1982).

[10] J. S. Turner, "Double-diffusive intrusions into a density gradient," J. Geophys. Res.
83, 2887 (1978).

[11] B. R. Ruddick and J. S. Turner, "The vertical length scale of double-diffusive intru-
sions," Deep-Sea Res. 26, 903 (1979).

[12] P. E. Linden, "Salt fingers in steady flow," Geophys. Fluid Dyn. 6, 1 (1974).

[13] T. Maxworthy, "The dynamics of double-diffusive gravity currents," J. Fluid Mech.
128, 259 (1983).

[14] J. Yoshida, H. Nagashima, and W. Ma, "A double diffusive lock-exchange flow with
small density difference," Fluid Dyn. Res. 2, 205 (1987).

[15] B. R. Ruddick and T. G. L. Shirtcliffe, "Data for double diffusers: Physical properties
of aqueous salt-sugar solutions," Deep-Sea Res. 26A, 775 (1979).

[16] A. F. Thompson, in Proceedings of the 2003 Summer Study Program in Geophysical
Fluid Dynamics (Woods Hole Oceanographic Institution, Woods Hole, MA, 2003), pp.
146-165.

[17] M. E. Stern, "Geostrophic fronts, bores, breaking and blocking waves," J. Fluid Mech.
99, 687 (1980).

[18] M. E. Stern and E. P. Chassignet, "Mechanism of eddy separation from coastal cur-
rents," J. Mar. Res. 58, 269 (2000).

281



Experiment Diffusive Tendency Density Difference Mean Density
1 Diffusive Layer 0.00046 1.02
2 Diffusive Layer 0.00044 1.02

5 Fingers 0.00046 1.02
6 Nondiffusive 0.00048 1.00
7 Diffusive Layer 0.00053 1.02
8 Fingers 0.00051 1.02
9 Fingers 0.00048 1.02
10 Diffusive Layer 0.00050 1.02
11 Diffusive Layer 0.00011 1.02
12 Diffusive Layer 0.00013 1.04
13 Diffusive Layer 0.00012 1.02
14 Fingers 0.00012 1.04
15 Fingers 0.00014 1.04
16 Fingers 0.00012 1.04
17 Diffusive Layer 0.00013 1.04

53 Fingers 0.00050 1.02
54 Diffusive Layer 0.00050 1.02

Table 3: Table of nonrotating experiments. Experiments 3 and 4 were removed because of
operational error.
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Experiment Diffusive Tendency Density Difference Mean Density
18 Nondiffusive 0.00049 1.00
19 Fingers 0.00047 1.02
20 Fingers 0.00049 1.02
21 Diffusive Layer 0.00051 1.02
22 Diffusive Layer 0.00046 1.02
23 Fingers 0.00015 1.02
24 Diffusive Layer 0.00002 1.02
25 Diffusive Layer 0.00012 1.02
26 Nondiffusive 0.00010 1.00
27 Diffusive Layer 0.00013 1.02
28 Nondiffusive 0.00050 1.00
29 Diffusive Layer 0.00049 1.02
30 Fingers 0.00049 1.02
31 Nondiffusive 0.00050 1.00
32 Fingers 0.00012 1.04
33 Fingers 0.00012 1.04
34 Diffusive Layer 0.00011 1.04
35 Diffusive Layer 0.00013 1.04
36 Fingers 0.00049 1.02
37 Diffusive Layer 0.00049 1.02
38 Fingers 0.00060 1.04
39 Diffusive Layer 0.00051 1.04
40 Fingers 0.00014 1.04
41 Fingers 0.00011 1.04
42 Diffusive Layer 0.00011 1.04
43 Nondiffusive 0.00039 1.00
44 Nondiffusive 0.00012 1.00
45 Fingers 0.00011 1.04
46 Diffusive Layer 0.00012 1.04
47 Fingers 0.00047 1.04
48 Diffusive Layer 0.00047 1.04
49 Fingers 0.00012 1.02
50 Diffusive Layer 0.00011 1.02
51 Fingers 0.00053 1.02
52 Diffusive Layer 0.00056 1.02

Table 4: Table of rotating experiments. Note that Experiment 24 is only diffusive layer
favorable in a marginal sense, since the density difference is so small.
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Convection in a Fluid Loop

Eleanor Frajka Williams

Abstract

Sandstr6m's conjecture states that a closed steady circulation can only be maintained in
a fluid body if the heating is applied at a lower level than the cooling. In the ocean this has
been taken to mean that there can not be a purely buoyancy-driven circulation since the pri-
mary sources of heat and salt are applied at the surface. Using the one-dimensional fluid loop
of Welander with boundary condition of temperature relaxing to warm and cold at the same
geopotential, we find that Sandstr6m's conjecture holds; circulation and horizontal heat trans-
port all vanish as the Rayleigh number R - cc (the limit relevant for the ocean). However,
if we specify fixed temperature flux boundary conditions, then contrary to Sandstr6m's conjec-
ture, circulation does not vanish as R -- * -. Thus Sandstrbm's conjecture is sensitive to the
particular choice of boundary conditions specified. In the case of the ocean, where salinity and
sensible heat also play a role in forcing the system, it is not clear that fixed temperature rather
than fixed flux boundary conditions at the surface are appropriate.

This system of horizontal convection in a loop is stable, but becomes chaotic as the heat
sources are rotated from horizontal to vertical positions (heating at the bottom and cooling
at the top). We determine the orientation of the heating and cooling at which this transition to
chaos occurs. We also show how the strength of the circulation responds to different positioning
of heating and cooling.

1 Introduction

Oceanographers have long debated whether or not there can exist a purely buoyancy-driven circu-
lation in the ocean. Roots of the discussion trace back at least as far as J.W. Sandstr6m in 1908
who, assuming the ocean circulation worked like a heat engine, concluded that there cannot exist a
circulation unless the heating occurs below the cooling, a result sometimes known as Sandstr6m's
Theorem. We will call it Sandstr6m's conjecture. The statement has since been formalized to in-
clude effects of friction and viscosity, which Sandstr6m did not consider, and can be stated as

Sandstr6in's Conjecture: "If a viscous and diffusive fbid is nonuniformly heated from
the same level then in the limit K - 0 with v/i fi xed, the motion in the fbid also

disappears," (1).

Oceanographers have inferred from Sandstr6m's conjecture that turbulent mixing rather than buoy-
ancy drives the global conveyor belt (meridional overturning circulation) and that there must be a
mechanical energy source to drive the raising of cold water such as wind or tides (2). Then the
meridional overturning circulation is just a salt and heat conveyor belt riding on the wind- and
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Figure 1: The story: A picture of the global ocean circulation. The wind-driven gyres are near the
surface, deep water formation (DWF) at the poles. Mixing due to wind stress and tidal dissipation
is required to bring heat down to the abyss to stratify the abyssal ocean. If you remove the mixing,
the abyss will fi 11 up with cold water and there will be no circulation.

WARMR

(a) Type I (b) Type H]!

Figure 2: Convection in a box with heating and cooling sources placed at different levels. Adapted
from Defant (4).

tidally-driven circulation (3). Figure 1 shows the ocean circulation with the wind-driven gyres at
the top, with deep convection at the poles closed by interior mixing. In the absence of this mixing,
Munk and Wunsch say the ocean would just fi 11 up with cold water and have a very shallow, warm
circulation near the surface (2).

Paparella and Young (2002) examined horizontal convection in a 3-D ocean with fi xed temper-
ature boundary conditions (5). They showed that dissipation vanishes as diffusivity vanishes using
the maximum extremum principle which they contended supports inferences derived from Sand-
str6m's conjecture, in particular that, if the ocean were driven purely by surface heating, then one
wouldn't see the observed small-scale turbulence. However, their arguments do not eliminate the
possibility of an ocean circulation that is driven by surface heating.

Using energetics, they showed that, in the steady state, energy is input to potential energy from
mixing given by the term K (b,), then converted to kinetic energy by the vertical flix of buoyancy
(wb) and eventually lost to internal energy through mechanical energy dissipation F where in all
cases (.) represents total ocean averages. In steady state, the global conversion terms between
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different types of energy are
S= (wbý = (b,)(1)

Averaging mixing ic (b,) over z they write,

2• -< (btop - bbottom)dXdy. (2)
H f

Applying fi xed temperature boundary conditions, the maximum extremum principle implies that the
integral on the right-hand side is bounded by a constant Ab, and they conclude that P scales with the
diffusivity c. This result, that 2 vanishes, is their anti-turbulence theorem.

However, using calculus of variations, one can show that globally averaged velocity is bounded
by the gradient in velocity times a constant prefactor,

luR2 -< 2L2  Vul2  (3)

where they considered the ocean periodic in both horizontal directions with period L. Since E =
v JVul2 then for circulation,

1 2L2 Ab. (4)

Keeping the Prandtl number v/ic fi xed, as -K - 0, then Iu12 < const and Paparella and Young
(2002) neither confi rms nor denies Sandsti~m's conjecture.

In this paper, we revisit the idea of a buoyancy driven circulation in a simple 1-D thin fbid
loop forced by nonuniform heating and two types of boundary conditions: a temperature relaxation
boundary condition and a fi xed buoyancy flhx boundary condition. In §2 we describe the fbid loop
formulation and the energetics and form of solutions in the system. In §3 we examine the behavior
of steady state fbid fbws in the loop subject to heating and cooling at the same geopotential, as well
as implications of these solutions for Sandstrbm's conjecture. In §4, we look at type III convection
where heating is applied above cooling, and in §5 we look at type I convection where heating is
applied below cooling. In this configuration, we find time dependent solutions including periodic
orbits, periodic doubling, and chaos-like behavior. Still, we are able to bound quantities with oceanic
import, like mechanical energy dissipation and circulation strength. In section §6, we summarize
our conclusions, mention a revision of Sandstr6m's conjecture which is true, but does not have the
practical applications of Sandstr6m's original conjecture. Finally, we make a few brief comments
about what all this means for the global ocean circulation.

2 Fluid Loop formulation

First introduced by Malkus, Howard and Welander (6; 7; 8), the I-D fiid loop is one of the simplest
systems in which to analyze convection. The single dimension of the system is azimuthal, as a result
of the thin loop approximation-that the radial thickness of the loop is vanishingly small, and there
is no variation in the radial direction. Here, the system is forced by heating and cooling around the
loop, with no net heating or cooling. We will also hold the Prandtl number constant.

In our loop, with radius a, v0 is the azimuthal velocity, 0 is the angular velocity, and angle 0
is defi ned positive in the counterclockwise direction as shown in Figure 3. The loop is oriented
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Figure 3: Fluid loop coordinate system and symbol defi nitions.

vertically so that the z-direction is acosO and buoyancy acting in the z-direction has component

bcos 0 in the azimuthal direction.
Given this formulation, we may write the velocity of the the fhid as

I D0

vo= af2(t) . (5)

The buoyancy equation is

ab vo eb a2b I ab b 1 2 b
-a+ r =K 0r2 + r r r2 r-r2  (6)

We may defi ne our boundary conditions at the inner and outer edges of the thin loop as

Ur=O at r, r+ (7)

Kb rr = y(b* -b) + F(O) , (8)

where the sources are

b* = gcos(O + X) (9)

F(O) = Focos(O+X) . (10)

with zero azimuthally averaged forcing, necessary to be able to consider steady states of the system.

In all cases below, we will consider X e [-ct, t]. Integrating the buoyancy equation (6) in the radial
direction and applying boundary condition (8) gives,

ab aJb
t+ -b)+F(O).(11)

The momentum equation in the radial direction is

aUr aU'. VO alUr V2 l vp a 2 Ur I aUr Ur I a 2 Ur 2 avo
-t +Ur + r-- O r- + " -- +-r2 +r -rr -+ 2r2a r2 -0 (12)

and for a very thin loop, viscosity dominates in the radial direction, then

a2 Ur 0 (13)

ar2
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Figure 4: (a) Horizontal convection in the loop (X = 0). The location of heating maybe thought of as
the equator in the ocean, and the location of cooling as the poles. (b) Rayleigh-B6nard convection
in the loop (X = 90). White shading indicates heating; dark shading indicates cooling.

and using the boundary condition (7),
U, = 0. (14)

Then the momentum equation in the azimuthal direction becomes

vo vo _v0 1 0I p a2vo I avo vo a 2vo
atrp 0 r r r2  r2O r2 +bcosO. (15)

From equation (5), we have no variations in velocity or pressure in the azimuthal direction, then
integrating in r and 0 we have

a92 I bcosOdO -i1Ž2. (16)-at 2 ýtca

Given these sources, when X = 0 we have heating and cooling applied at the same geopotential
level as shown in Figure 2. When X < 0, heating is applied above cooling as shown in Figure 2.
When X > 0, we have heating applied below cooling in the loop. We will consider these three cases
of convection in §3-5.

2.1 Energetics

In this system, kinetic and potential energy are given by

KE = a222, PE = acos0b. (17)

2

By taking vo. (momentum) and integrating around the loop, we can write an evolution equation for
kinetic energy as

(KE), = -aQ (bcos 0) - 1la 2 2Q, (18)
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where (') = I f .dO. On the right hand side, the fi rst term is the vertical buoyancy flhx, the con-
version term between kinetic and potential energy, analogous to (wb) in the cartesian coordinate
system, and the second term is the mechanical energy dissipation P.

The evolution equation for potential energy is derived by deriving in time a (bcos8),
a(PE), = aQ (b cos 0) + ay (b sin 0) + - (yg + F0) sinX . (19)

2

The first term in (19) is again the conversion term between kinetic and potential energy. The second
term is the source of potential energy through mixing, analogous to (icb,) in the cartesian coordinate
system, and the third term representing sources of potential energy through external heating and
cooling.

The boundary conditions add no net buoyancy to the system, so the long-time averages of the
energy equations (18) and (19) vanish, and we can write

a

la2•-• = aQ (b cos 0) = ay(b sin 0) + - (yg + Fo)sin X. (20)
2

where: = limT_-.I fL .dt, the long-time average.

Horizontal Convection (x = 0)

For horizontal convection, equation (20) becomes

Tla 2j-'2 = aQ (b cos 0) = ay(b sin 0),

which is analogous to Paparella and Young's statement that

S= (wb) = K (b,) .

However, the same arguments that they used to bound dissipation by a constant times diffusivity
do not hold in this case. In particular, the maximum extremum principle no longer applies and one

cannont bound (b,) nor ay(bsin0) by a constant, so it is not immediately obvious that the anti-
turbulence theorem should hold.

Heating above cooling ( < 0)

In the case of heating above cooling, equation (20) becomes

ila 2jj- = a92 (b cos 0) = ay(b sin 0) - a (ytg +F0)sinXI.
2

Added buoyancy through either the relaxation temperature or fi xed flbx boundary condition repre-
sents a loss of potential energy to drive the circulation.

Heating below cooling (x > 0)

For heating below cooling, we have

ila 2jj- = aQt (b cos 0) = ay(b sin 0) + a (yg + 0o)I sinXI .
2

and the buoyancy sources represent a source of potential energy available to drive circulation.
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2.2 Solutions for b

Since we are considering solutions in a Ibid loop, the buoyancy solution must necessarily be peri-
odic. We can construct the general solution of buoyancy in our equations as an infi nite sum of sine
and cosine modes,

b(t,O) = S,,(t)sin(nO) +C,(t)cos(nO) . (21)
n=1

where S,& and C,, are the amplitudes of the nth mode of buoyancy. Using this form of the solution,
equations (16) and (11) become

a_ = 1 C](t)cos2 OdO_ -112 (22)
at 2rna

-= Cn -yS + (yg + Fo) sinX, (23)

aC,1a)- 2S, - ,C,, + (yg + Fo) cosX. (24)at

From these equations we can see that only the mode one (n = 1) solutions for buoyancy are coupled
to equation (22), so the full dynamics of the system are captured using only the mode one solution,
irrespective of the form of the forcings, b* and F(O). So dropping the subscript n, we use

b(t, 0) = S(t) sin 0 + C(t) cos 0 (25)

as our buoyancy solution, and

Cf C
2a2a (26)

St = 2C - 7yS+ (yg + Fo) sinX, (27)

C, = -2S - 'C + (yg + FO) cosX. (28)

are the equations governing our system.

2.3 Nondimensional equations

We rescale the system with the following nondimensionalization,

2s R ---Q-- 9= S/R,

2wM F 2 ~
where the ý denotes the nondimensional form of a variable. The Rayleigh number is R in our system,
and we write an analogous Rayleigh number RF for the fi xed buoyancy flux term.

We rename the variables

X=f2, Z=-C+rsinx,
Y=S, r = R+RF,
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which gives us a new system of equations

=o(Y - X), (29)

Y=rsinXX - Y -XZ+ rcosX, (30)
z xY - Z. (31)

When X = 90, this is these are the Lorenz equations,' where heating and cooling are applied at the
bottom and top of the loop respectively. In this system, X is our nondimensional angular velocity,
Y is the sine buoyancy mode amplitude, and Z is the cosine buoyancy mode amplitude shifted and
fipped. More physical quantities which we will consider are the nondimensional dissipation 9,
buoyancy flbx (wb), and mixing (Kb,),

g = X2 , (wb) = aXY , (kb,) = zZ . (33)

We will also consider horizontal heat transport, HT = (vob) = -af2S/2. In nondimensional form,

HT = --o(XZ+rsinXX). (34)

In the ocean, heating and cooling are applied at the ocean surface which is equivalent to being
applied at the same geopotential in the loop, at X = 0. We will examine the steady state solutions
for buoyancy and circulation, their stability, and some of the physical quantities in equation (33)
as functions of the Rayleigh numbers defi ned in our nondimensionalization (§2.3). The goal is to
determine the behavior of the solution in the diffusive and nondiffusive limits (small r and large r,
respectively).

We will then proceed to consider convection where the heating is applied from above (at X < 0),
the stability of these steady state solutions and their implications for dissipation and circulation.
Finally we will consider the case of heating applied below cooling, which is the atmospheric analog
since the atmosphere is relatively transparent to the short-wave radiation from the sun, and is heated
by long-wave radiation from the Earth. We will again attempt to say something about the behavior
of dissipation, circulation and horizontal heat transport as functions of the Rayleigh numbers.

The system of equations (29)-(31) has steady solutions, given by the fi xed points (X%, YO, ZO)
satisfying

YO = x0,

+ (1 - rsinX)Xo = rcosx, (35)

z0=xZ0

If the fi xed points are globally stable, then the system has no intrinsic time dependence. If the fi xed
points are not stable, the solutions of X, Y, and Z to the full equations (29)-(31) can develop time
dependence.

1The Lorenz system is

X =o(Y-X)
= rX - Y -XZ (32)

Z=XY -bZ

where b is the aspect ratio of convective cells, typically taken to be 8/3 in the atmosphere, but for a circular flaid loop,
b = I as in our case. Tritton showed that the Lorenz equations could be derived for the loop (9).
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Figure 5: Steady state solutions for horizontal convection X = 0 with (a) r = 0.1 and (b) r = 100.
"H" and "C" indicate locations of maximal applied heating and cooling and may be thought of as
equator and polar regions in the ocean. Colors indicate temperature in the steady state solutions
(white hot, dark cold), and arrows indicate the direction and relative magnitudes of circulation for
the two cases, small and large r.

3 Horizontal Convection (= 0)

For the case of heating and cooling at the same level, also known as horizontal convection, we have
X = 0, for which the fi xed point equation (35) becomes

X 3+XO =r. (36)

In the approximation of large and small r, we have the balances

X3 gr forrlarge, (37)

X0 z r for r small, (38)

which give the scalings for the nondimensional, steady state circulation Xo.
Exact solutions are shown in Figure 5. The locations of maximum applied heating and cooling

are indicated by the letters "H" and "C", while the colors in the loop show the steady state pattern of
temperature in the loop. The arrows show the magnitude and direction of the resultant circulation.
In terms of the buoyancy solution in equation (25), the applied forcing for horizontal convection
is a cosine mode. For small r (large diffusivity), the resulting steady state pattern of warm and
cool water in the loop is dominated by the cosine mode. The pattern is displaced slightly, however,
with warm water above the location of heating since the circulation displaces some water, and the
diffusion (except in the r = 0 limit) does not fully relax the temperature pattern to the applied
heating. The circulation is small, but nonzero, resulting from the applied torque of the nonuniform
heating, balanced by frictional drag. For large r the pattern of buoyancy is dominated by the sine
mode, 90 out-of-phase, and the circulation carries the heat towards the top of the loop and a position
of smaller potential energy in the system. The patterns of temperature in the steady state shows
the dominance of the forces on the either diffusive, relaxing the temperature pattern to the applied
heating, or convective, reducing the torque by moving the light water to the top and the heavy water
to the bottom.
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3.1 Stability of solutions ( = 0)

Numerical experiments suggested that the steady solutions were reached for any arbitrary condition.
Global stability of a solution means that from any point will move in time towards the steady solution
and won't stop till it gets there. This can be shown by constructing a Lyaponov functional of a
perturbation (not necessarily small) around the fi xed point, then show that the derivative of the
Lyaponov functional is negative. Mathematically speaking, we fi nd a function V(8x) where X =
(X,Y,Z) and X = Xo + 8x, such that V < 0 V 8x 0, and 1V = 0 only for x =0. We construct a
Lyaponov functional for this system, not necessarily unique, as

V (8X, 8y, 8Z) = "I 8x2 + 8y2 + 8Z2  (39)

The derivative of V may be rearranged
1._ X2 15

0 8X2 -- 8y2 8-•Z2 -- (8Z _ 8xXXo)2 (40)

2 2 2 2

from which we can see that
V < 0, (41)

so solutions to equation (36) are globally stable.

3.2 Circulation, dissipation and horizontal heat transport (x = 0)

In the steady state, Xo is the nondimensional circulation, and nondimensional dissipation and hor-
izontal heat transport are given in the equations in (33). Dissipation and horizontal heat transport
scale with r in the large and small limits as

•; •ar 2 , - -aTr 3  for r small (42)

9 zr 2/ 3 , H7f, i -ar for r large. (43)

Using the exact solutions of the fi xed point equation, the circulation, dissipation and horizontal heat
transport shown in Figure 6a-c, and match these scalings in each limit.

In the dimensional form, these quantities are dependent on the choice of boundary conditions
used, specifi ed as sources in equation (11), or for the nondimensional fi xed point equation as,

X0 +Xo = R, (44)

X3 = X RF. (45)

These two equations are equivalent to setting either F(O) = 0, or b* = 0 in the dimensional equa-
tions (23), which we called restoring-like or fi xed ffx-like boundary conditions, respectively. The
behavior of the dimensional quantities circulation, dissipation and horizontal heat transport

-2 2 = V2a 2 Q2 , HT = -aa 2 "• (46)

will be considered as a function of the relaxation timescale, or equivalently diffusivity, y.
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Restoring-like boundary conditions

For restoring-like boundary conditions, we use equation (44) to determine dimensional scalings. In
the steady state, dimensional circulation given by Q =,yXo scales as

92 g - 0 asy-____c (47)
2ac7

g 1/3 ',1/3 _ 0 as y - 0. (48)

2aa

So in both the nondiffusive and diffusive limits, circulation vanishes. For dissipation,

E -1 0s(49)

Sg2a4(Y 1/3 r5/3 - 0as y- 0. (50)
4

Again, in both limits, dissipation vanishes. Lastly, horizontal heat transport in the steady state,

HT 3 0 ---• (51)

HT , ga2 y-Oasy )0, (52)

vanishes in both limits. These scalings are shown in Figure 6d-f as indicated by the blue lines.

Fixed flux-like boundary conditions

In the steady state, dimensional circulation given by Q = yX0 scales as

Q -; 2-- -2 0 as y--- ,(53)

~F 0 1/3
92 -2o 1 const as y- 0. (54)

So in the diffusive limit, circulation vanishes, but in the nondiffusive limit (as y - 0), circulation
remains constant. For dissipation,

02-- y-3 0 as Y ,(55)

E,-• Foa 4 o /3 y--Oasy--- 0. (56)

In both limits, dissipation vanishes. Horizontal heat transport in the steady state,

HT -6 Oasy (57)
F8a-

HT F -- a- const as y -0, (58)
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Figure 6: (a)-(c) Nondimensional scaling of circulation, dissipation and horizontal heat transport
as functions of the Rayleigh number. (d)-(f) Dimensional scaling of the same, as functions of the
relaxation timescale y. Red solid lines indicate solutions using only fi xed buoyancy flux boundary
conditions. Blue dashed lines indicate solutions using only the relaxation temperature boundary
conditions.

vanishes in the diffusive limit, but is a constant in the nondiffusive limit. These scalings are shown
in Figure 6d-f as indicated by the red lines.

In summary, In both cases, dissipation vanishes, in agreement with Paparella and Young's anti-
turbulence theorem, and for the restoring-like boundary conditions, circulation, and horizontal heat
transport vanish in the nondiffusive limit (the oceanic case). However for fi xed fix-like boundary

conditions, circulation and horizontal heat transport do not vanish.

3.3 Implications for Sandstr6m's conjecture ( = 0)

1. In the diffusive limit 7y ) -o, the temperature in the steady solution is relaxed to match the
applied forcing while, in the nondiffusive limit y - 0, the solution has warm water at the
top of the loop and cold water at the bottom, towards the limit of minimum potential energy.

2. In the relaxation temperature case (F(O) = 0, b* -€ 0), dissipation, circulation and horizon-

tal heat transport all vanish in the nondiffusive limit (y - 0). This is in accordance with
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Figure 7: Steady state solutions for heating above cooling X = -15 with (a) r = 0.1 and (b) r 100.
"H" and "C" indicate locations of maximal applied heating and cooling. Colors indicate temperature
in the steady state solutions, and arrows indicate the direction and relative magnitudes of circulation
for the two cases, small and large r.

Sandstrbm's conjecture, that horizontally applied heating cannot drive a circulation.

3. In the fi xed buoyancy flbx case (b* -- 0, F(0) -$ 0), dissipation still goes to zero in the non-
diffusive limit, but circulation and horizontal heat transport saturate at a constant. When
diffusion does not carry the applied heating to the location of applied cooling, a circulation
must exist to maintain the applied flax. Sandstr dim's conjecture no longer applies given fi xed
flhx boundary conditions. Though heating is still applied horizontally, there is a substantial
circulation in the limit of small diffusion.

4 Heating Above Cooling Qx< 0)

For the case of heating above cooling (z < 0), the fi xed point equation (35) is

X3 + (I -rsinZ)Xo = rcosX,

with rsinx < 0. In the approximation of large and small r, we have the balances

X3 1/tanX for r large, (59)

X0 • rcosx for r small , (60)

which give the scalings for the nondimensional, steady state circulation X0. In particular, in the
large Rayleigh number limit, Xo scales as a constant, dependent on the angle of applied heating.

The solutions to this cubic polynomial are in Figure 7. Again at low Rayleigh number the
circulation is very small and the pattern of heating is very similar to the applied pattern of heating.
The circulation results from the balance between applied torque and drag. For large r, the circulation
is faster, but not as fast as for horizontal convection at the same Rayleigh number.
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Figure 8: A diagram of the global stability of fi xed points X) in X - r space given by the condition
that rsinx _ X2/2 where X0 depends in X and r. The area in green is globally stable.

4.1 Stability of Solutions (x < 0)

The stability of solutions for heating above cooling is also globally stable, and can be shown using
the same Lyaponov functional as for horizontal convection.

V(8x,8y, - X°)-rsinX 8X2+8y2+8Z2• (61)

The derivative of V may be rearranged

=rsin X)8x2 8Z (62)
2 2 2' 2

from which we can see that
Vý < 0 (63)

as long as

rsinX < X02 (64)

For all X < 0, rsinx < 0 < X2/2 and the condition is met, so the solutions are globally stable. The
regions in X - r space which are globally stable are shown in Figure 8.

4.2 Circulation, dissipation and horizontal heat transport (x < 0)

For X < 0, dissipation and horizontal heat transport scale with r in the large and small limits as

2 23 3E r (Y cos C , HT --or- cos' X for r small , (65)

E • Gicot 2 X, fHT , -- cot X for r large. (66)
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Figure 9: (a)-(c) Nondimensional scaling of circulation, dissipation and horizontal heat transport as
functions of the Rayleigh number for heating above cooling (y, = - 150). (d)-(f) Dimensional scaling
of the same, as functions of the relaxation timescale y. Red indicates solutions using only fi xed
buoyancy Ilix boundary conditions. Blue indicates solutions using only the relaxation temperature
boundary conditions.

These scalings are shown in Figure 9a-c. All three nondimensional quantities saturate at a constant
(in r, not in X) for large r.

In the dimensional form with the quanitites given by the equations in 46, circulation, dissipation
and horizontal convection scale as shown in Figure 9d-f. For heating above cooling, with either type
of boundary conditions, all dimensional quantities vanish in the diffusive and nondiffusive limits.
There exists a circulation for small y, but it is very weak.

5 Heating Below Cooling (x > 0)

In this section we will consider heating below cooling, starting fi rst with the special case of heating
directly at the bottom of the loop. This case is symmetric across the z-axis and as a result has
different characteristics than the other cases for X > 0. The fi xed point equation is, as for X < 0,

X6 + (I - rsinX)Xo = rcosX, (67)
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Figure 10: Fixed point solutions for convection with X = 90 with (a) r = 0.1 and (b) r 100.
"H" and "C" indicate locations of heating and cooling along the loop. The colors indicate the
temperature pattern for a fi xed point in the system. Arrows indicate direction and relative magnitude
of circulation.

but we will fi nd that for certain parameter ranges of X and r, the fi xed point solutions are not stable,
so the solution to the full equations is time dependent.

5.1 Rayleigh-B6nard convection ( = 90)

We will fi rst consider the special case of heating at the bottom of the loop (X = 90), called Rayleigh-
B6nard convection for which equations (29)-(31) are the Lorenz equations. For this case, the fi xed
point equation is

X3+ (I -r)Xo = 0, (68)

with solutions X0 = 0 for all r, and X0  ± r±vT-- I for r > I. This fi rst solution has warm water at the
bottom with the heat being carried to the top by diffusion alone. Because the heat is applied sym-
metrically about the z-axis, there is no applied torque. As diffusion is decreased (r is increased), the
X0 = 0 solution becomes unstable (at r = 1) and two stable solutions with circulation either clock-
wise or counterclockwise appear. This is called a pitchfork bifurcation. Two fi xed point solutions
for small and large r are shown in Figure 10.

For r =Y+4 these two stable solutions become unstable and both simultaneously undergo aa-2,
subcritical Hopf bifurcation, where the stable solution becomes an unstable limit cycle. The loca-
tions of the stable and unstable fi xed points, and a diagram of the bifurcation is shown in Figure 11.
The pitchfork bifurcation appears as it is called, and the Hopf bifurcations are the two simultaneous
from stable to unstable fi xed point. More details on this system the Hopf bifurcations in the Lorenz
system can be found in Drazin (10).

5.2 General Heating Below Cooling (Q > 0)

For the general case of heating below cooling (Q > 0), there are two qualitatively different behaviors
that may arise in our system, depending on how close X is to the symmetric case of X = 90. For all
X > 0, there is no fi xed point solution without circulation since the asymmetrically applied heating
creates a torque on the system which, even in cases of large but fi nite diffusivity (small r), creates
a nonzero circulation balancing frictional drag. For larger r, this near zero circulation increases
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Figure 11: Bifurcation diagram for convection with X = 90. Solid lines indicate stable fi xed points;
dotted lines indicate unstable fi xed points. There is a pitchfork bifurcation at r =' 10 and two Hopf
bifurcations at r---a((-t-4)/ (c- 2).

S C C C

H H H

Figure 12: Fixed point solutions for X 95. "H" and "C" indicate locations of heating and cooling
along the loop. The colors indicate the temperature pattern for a fi xed point in the system. Arrows
indicate direction and relative magnitude of circulation.

in magnitude, and two new fi xed points appear out-of-nowhere. The appearance of two new fi xed
point solutions from nowhere is called a saddle-node bifurcation. For X near 90, one of the new
fi xed point solutions is stable and the other unstable. For X further from 90, the two new fi xed
points are unstable. This critical angle is approximately AX = 33, so the region of "X further from
90" is IX - 901 > 33.

The three stable zolutions for X = 95 are shown in Figure 12. At small r, the near-zero circu-
lation is stable and in the direction of applied torque and is the result of the balance between this
torque and frictional drag. For larger r, the counterclockwise circulation is in the direction of the
torque, so naturally it is larger than the steady state circulation in the opposite direction.

As r increases, the stable clockwise and counterclockwise solutions undergo a Hopf bifurcation,
as in the Rayleigh-B6nard case, but not simultaneously. The circulation contrary to the torque goes
unstable at smaller r that in the other direction. The bifurcation diagram for z = 95 is shown in
Figure 13.

Numerically computing the fi xed points and their eigenvalues gives us Figure 14, which shows
the numbers of stable and unstable fi xed points in X - r space. The transitions from I to 3 fi xed
points are saddle-node bifurcations, and the conversion of a stable fi xed point to an unstable fi xed
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Figure 13: Bifurcation diagram for convection with X 95. Solid lines indicate stable fi xed points;
dotted lines indicate unstable fi xed points. There is an imperfect bifurcation near r = II and two
Hopf bifurcations near r = 15 and r = 19.

point is a Hopf bifurcation. The curves for the locations of Hopf and saddle-node bifurcations
in X - r space may also be computed analytically from the eigenvalues of the fi xed points. The
eigenvalues X of our system are the solutions to the equation, called the characteristic polynomial,

detlA - XI = 0, (69)

where A is the linear stability matrix

A= rsinX-Zo -1 -XO, (70)[ YO X0  -1

and I is the 3 x 3 identity matrix. The characteristic polynomial is

V,3+(±+2)X2 +(2a+I+X02 +(Xo-rsinX))X ,+(l+2X2+Xo-rsinX)=0. (71)

For a Hopf bifurcation, the real parts of two complex conjugate eigenvalues pass through 0.

This is the same as saying that at a Hopf bifurcation, two of the eigenvalues are purely imaginary.
Whether the real parts become positive or become negative determines whether or not the Hopf

bifurcation is subcritical or supercritical. Then the eigenvalues at a Hopf bifurcation may be called
(X) ,io),-iwo) giving a polynomial which must be equal to the characteristic polynomial for these to
be eigenvalues of our system. Then we can solve

(XI) (2 + )3 2 ) = 2 3 + (G+ 2) 2 +(23+ 1 +X2 +o(Xo - rsinX)),+ (l1 + 2Xo2 +Xo - rsinX),
(72)

or collecting powers of k.,

k. = -7-2, (73)

02 = 25+ 1 +X2 +a (Xo-rsinX), (74)

lO 2 = -a(1± +2XO 2+Xo-rsinX) . (75)

301



135-
(1,0) (1,2)

(0,3)
90 (2,11) .

4- Saddle Hopf

0 ''

0 2 4 6
loglo(r)

Figure 14: Bifurcation diagram in X - r space where (s,u) indicates the numbers of stable and
unstable fi xed points in each region, solid lines indicate bifurcations and the dotted line is the slice
through r-space of X = 95 for which the bifurcation diagram is shown in Figure 13.

This system of equations may then be solved for XO(X, r) which is the equation of the Hopf bi-
furcation in X - r space. We must also require that (o2 < 0 since these are two purely imaginary
eigenvalues.

Similarly, at a saddle-node bifurcation, one eigenvalue passes through zero giving the polyno-
mial

k(k- ?11)(k- k2) = k3+ (o + 2)?2 + (2cy+ I +X2 +,(Xo - rsinX))k+ cy(I +2X2 +Xo - r sinX),
(76)

so the last term must be zero, giving

-o(l + 2X2 +Xo - rsi.nX) = 0, (77)

which may be solves for Xo(x,r), the equation of the saddle-node bifurcation. These curves are
plotted in Figure 14 and precisely defi ne the transitions between numbers of stable and unstable

fi xed points.

5.3 Time dependent solutions ( = 45)

Past both Hopf bifurcations, the system has gone completely unstable, so we use an explicit Runge-
Kutta routine in MATLAB to numerically integrate solutions to the system. For the Rayleigh-B 3nard
case, which is also the Lorenz case, the system quickly becomes chaotic past the Hopf bifurcations,
though much further in r-space reverts to periodic solutions. For X = 45, we fi nd that the solutions
are initially stable limit cycles and, at higher r, develop period doubling and quadrupling, and
eventually chaos-like behavior as shown in Figure 15. This is indicative of a supercritical Hopf
bifurcation. (In exploring the parameter space near the second Hopf bifurcation for variable X, it
appears as though near X =- 90, the Hopf bifurcation is subcritical and chaos-like behavior develops
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Figure 15: Phase plots of X and Y after a long time, so the initial transient is discounted. (a) For
r = 270, (b) r =575 and (c) r =1995. These three plots show a stable limit cycle, period doubling
and chaotic-like behavior all from the fbid loop for X = 45.

quickly in r space. Further from X = 90, by about X= 75, stable limit cycles are observed and we
can conclude that the Hopf bifurcations are supercritical.) Given this sort of behavior, we can no
longer explicitly calculate the circulation, dissipation and horizontal heat transport in the system.

5.4 Upper Bound on Circulation and Dissipation Qx > 0)

For the case of heating below cooling (X > 0), the system exhibits limit cycles, period doubling
and chaos-like behavior. However, the long-time averages of circulation, dissipation, and horizontal
heat transport can be upper bounded as functions of the Rayleigh number and angle of heating X. In
our nondimensional setup given in §2.3, X is the angular velocity of the fbid. Since we are looking
for an upper bound on the magnitude of circulation in the long-time averages of the system, we will
look for bounds on X2 . Following the methods of P6tr6lis and P~tr6lis (11), we fi nd it convenient to
defi ne

E '(X2 + Y 2 +Z 2) (8
2 (8

which has no physical meaning in our system. We also defi ne

P=- ((T+rsinX)XY , (79)

D = oX 2-l+ Y_ rcos X 2 +Z2 r 2 Cos 2 X (80)
2 4

for which E=P - D. Then if we can show that E = 0, then P =D and from the long-time average
of equation (29), we know that T2 = XFY, a factor in P. So if we can fi nd an upper bound on-D, we
will have an upper bound on circulation.
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To show that E = 0, we must simply show that E is bounded. For this we follow the methods of
Doering and Gibbon (12) and construct a functional L which is decreasing for all (X, Y, Z) outside
a fi nite ellipsoid, which means that all trajectories eventually exist inside this ellipsoid. Defi ning

L _(X +rcosX) 2 +y 2 + (Z- rsinX- 1)2 , (81)

its time derivative is

IL _X2 -rcosXXY 2 _Z 2 +(rsinX+ 1)Z,
2

n 1)2 X 2  Z2 + 2rcos2X+(rsinX+ 1)2 .

(82)

Then the time derivative of L is bounded by a multiple of L and a constant term,

-L<-- IL+ -(r2 cos2 X+(rsin X+1) 2 ) , (83)
2 2 2

L < -L + 2rsinx + 2. (84)

Thus outside of the ellipsoid
L-- 2rsinx+ 2, (85)

the time derivative of L is negative. Thus all trajectories of X, Y and Z eventually enter this ellipsoid.
Then we have shown that E is bounded and we can look for a bound on circulation,

2- = P _ b < Do (86)
GT+ rsisin s - o+rsinX

The following argument will be to fi nd a small DA.
Using the background method of Doering and Constantin (13), we can write every solution as

the sum of a constant background fi eld and a fhctuating part in time:

X(t) = Xb +x(t). (87)

Substituting this into equation (80) and taking the long time average, we can write

h-2(F(Xb) - Q(Xb,x)) , (88)

where 2 2
F(Xb) = (aX,• + (Yb - rcosX/2)2 +Zf), (89)

I f+ 12  1 ̂  X12(rsinX Zb)2 2 _ L2

Q(Xb-X) = A12 + 2 2 2 - 2 X'bYb 4A (90)

In equation (90) terms have been gathered as

A a (Zb-rsinX-o)2  yb
2 2 2'

L XbYg + (XbrsinX - XbZb + Ircos X)(r sinX + Y - Zb) + aYb ,
2

304



and Q has been diagonalized in the fhctuating terms with

L=X-- --
21A

9 = y+ (Z9 - rsinX - a)x+Xb(Zb - rsinX) - IrcosX,

S= Z-- Yb(Xb +X).

In order to bound Do from above, we must be able to bound Q from below which means that we
need A > 0. ForA > 0, Q is a upward facing paraboloid in (X,Y,Z)-space so the minimum of Q is
the apex of the paraboloid. If A = 0, then we must have L = 0 to avoid singularities in the solution.
Since Q(Xb,•: = 0) < Q(Xb,i), then

D < Do = 2(F(Xb) - Q(Xb,* = 0)). (91)

Now we would like to pick an Xb which minimizes Do. One such solution is

Xb rcosX-- ,O rsinX+ T- x/ (92)

which gives a relatively tight bound on circulation,

1 (a ,r2 CS2 cos2 ÷ 2(rsinx~o-V')2
X--- < Do _4 (a 2X-rsn+Y (93)

- a+rsinX rsinX+a

Using this choice of Xb gives the bounds for heating below cooling of

X2 <_ (r) (94)
-9 <_ O(cr) . (95)

These bounds, as well as numerically integrated solutions to the equations are shown in Figures 16.
The bounds are quite good for large Rayleigh number r > a - V/'-. Solutions for X > 0 have a
much more vigorous circulation than for X < 0, but we are still able to bound the circulation and
dissipation in the system.

Horizontal heat transport may also be bounded by following the same procedure as above, but
letting

P - (o+ rsinX)XY + rcosXY, (96)

D' =,UX2 + y2 + Z2 . (97)

Finding a bound for D' will give a bound for P' which may then be compared with the bound for P
to give a bound for V. Then, noting that

HT = o(rsinXX -XZ) = iY (98)

a bound for HT can be found.
The dimensional form of the bounds for circulation and dissipation are shown in Figure 17.

Lines are the bounds for different angles and type of boundary conditions, while the stars in corre-
sponding colors are the values computed from integrating the equations. For small y, equivalently
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Figure 17: Heating below cooling: Log plots of dimensional bounds on (a) circulation and (b) dissi-
pation, for different boundary conditions (fi xed temperature flbx in red tones, relaxation temperature
in blue tones) and different angles of heating X > 0. X = 90 is a solid line, X = 67.5 is dashed, and
X = 45 is dash-dot. The stars are computed for each X by numerically integrating the equations.

large Rayleigh number, the bounds are quite good, while for larger y the bounds are loose. In the
nondiffusive limit the circulation does not disappear and in the case of fi xed flbx boundary condi-

tions, the circulation increases. The dissipation, in the thermal relaxation case, does disappear, but
remains constant in the fi xed flhx boundary conditions. In either case, the circulation is much more
vigorous than the case of horizontal convection.

6 Conclusions

Though the formulation of convection in a I -D fbid loop is very simple, the possible solutions
are diverse and complex. In the oceanic case of horizontal convection, or heating and cooling
at the same level, the validity of Sandstr6m's conjecture depends on the nature of the boundary
conditions. In particular, using temperature relaxation conditions as in Paparella and Young, and
most ocean GCMs, Sandstrbm's conjecture holds: as Kc - 0, circulation vanishes. On the other
hand, using fi xed buoyancy conditions, even in the limit as diffusivity vanishes, there is a substantial

circulation resulting from the differential heating. If Sandstrdm's conjecture were based on sound
thermodynamic principles, one would expect it to hold regardless of the nature of the boundary
conditions used.

It may be of interest to note that in fact, a variant of Sandstrdm's theorem does hold under both
thermal relaxation and fi xed flux boundary conditions. In the fbid loop, the location that a parcel
experiences heating (at what X the change in potential energy following a parcel is largest) is not
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the same as the location of maximally applied heating. If one considers horizontally "experienced"
heating (from the point-of-view of a parcel of water), then as 1 C 0, circulation also vanishes.
This is not of much practical use in the ocean, however.

In the atmospheric analog of heating below cooling, there exist time dependent solutions with a
much more vigorous circulation, though it is still possible to bound the circulation and dissipation
in the system as a function of the Rayleigh number. The circulation clearly does not vanish because
there is a source of potential energy, the only source which, according to Sandstr6m's conjecture, in
the absence of mixing may drive a circulation.

The main point to be taken from all this is that horizontal convection forced with buoyancy
conditions (equivalently temperature and salinity) can still drive a fi nite circulation in the absence
of diffusivity, given fi xed flhx boundary conditions. To motivate the relevance of this statement for
the oceans, we note that though sensible heat transfer from the atmosphere to the ocean behaves
as a relaxation temperature condition, latent heat and salinity forcing through precipitation and
evaporation behave like fi xed fbx conditions. In fact, latent heating of the ocean is more than twice
the magnitude of sensible heating of the ocean, so we would expect fi xed buoyancy fltx boundary
conditions to be more appropriate.

In a fbid loop, a purely thermohaline circulation can exist in the absence of mechanical energy
input from wind stress or tidal dissipation. It is not clear that a purely thermohaline circulation
cannot exist in the absence of external mechanical energy forcing.
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